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In model-based reinforcement learning, the conventional approach to addressing world model 
bias is to use gradient optimization methods. However, using a singular policy from gradient 
optimization methods in response to a world model bias inevitably results in an inherently biased 
policy. This is because of constraints on the imperfect and dynamic data of state-action pairs. The 
gap between the world model and the real environment can never be completely eliminated. This 
article introduces a novel approach that explores a variety of policies instead of focusing on either 
world model bias or singular policy bias. Specifically, we introduce the Multi-Step Pruning Policy 
(MSPP), which aims to reduce redundant actions and compress the action and state spaces. This 
approach encourages a different perspective within the same world model. To achieve this, we use 
multiple pruning policies in parallel and integrate their outputs using the cross-entropy method. 
Additionally, we provide a convergence analysis of the pruning policy theory in tabular form and 
an updated parameter theoretical framework. In the experimental section, the newly proposed 
MSPP method demonstrates a comprehensive understanding of the world model and outperforms 
existing state-of-the-art model-based reinforcement learning baseline techniques.

1. Introduction

Sequence decision-making problems are highly challenging tasks in artificial intelligence and are often modeled as Markov Decision 
Processes (MDPs) [1]. There are two main methods commonly used to address these problems: Planning and Reinforcement Learning 
[2]. Reinforcement Learning involves gaining an understanding of the control object through interaction data and then using that 
information to output control policies. However, when the sampling policy of the data is updated, the underlying data distribution 
changes, resulting in a high sample complexity. Model-based Reinforcement Learning (MBRL) explicitly learns a world model and 
then enhances the policy through interaction with this model, reducing the need for interaction with the actual environment. This 
approach reduces the complexity of the sample to a certain extent but still results in an effective strategy [3]. Therefore, MBRL is a 
promising research avenue for addressing practical challenges in the domains of control and robotics [4–8].
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Fig. 1. Parallel Multi-Pruning Strategy. (a) Illustration of policy pruning through repeating selection process. (b) The same environment model learned from experience 
is used for knowledge extraction in multiple policies.

In a real-world environment, there are two important functions that play a pivotal role: the state transition dynamics function and 
the reward function [2]. These functions allow agents to explore without incurring any costs. By collecting data from interactions 
between the agent and the environment, we can train a world model using supervised learning techniques that can approximate 
these functions. Ideally, if the model is highly accurate, it can be used to derive an effective policy. As a result, current research 
places significant emphasis on the model learning process in order to minimize model inaccuracies and ensure better alignment with 
policy. However, it is important to recognize that any learned model will inherently have a degree of imprecision, which can lead to 
compounded errors during simulation. In the two-stage learning problem, where the first step is acquiring an environmental model 
and the second is refining policies based on this model, having a model with a smaller environment error does not necessarily result in 
a better policy [2]. Therefore, this paper focuses on the utilization of the model rather than its bias. Specifically, we explore multiple 
policies for learning the same biased black-box world model.

A biased world model is likely to propagate bias to the policy as well [9]. To mitigate this issue, we propose a pruning policy that 
skips fake state inputs and repeats the previous action. This approach is designed to improve the consistency of neural networks in deep 
model-based reinforcement learning, leading to more effective training in various scenarios. For instance, in autonomous driving, 
a vehicle must select a braking policy when a pedestrian is detected. This requires the policy to continuously apply thousands of 
steps within a millisecond-long decision cycle. Our pruning policy allows for multiple repetitions of an action at a single decision 
point, which can be challenging to achieve with variable inputs. By pruning non-optimal options, our approach promotes policy 
diversification. Specifically, if there are two action repetition cycles, as illustrated in Fig. 1 (a). Our approach prunes the policies 
entering 𝑠12 and 𝑠21, and only retains the decisions to perform actions {𝑎1, 𝑎1} and {𝑎2, 𝑎2}. This paper presents a diverse pruning 
policy method, Parallel Multi-Step Pruning Policy (MSPP), to address problems under the same environment model. This policy 
considers multiple perspectives and then integrates the results using the cross-entropy method to find the optimal solution. The data 
flow architecture is illustrated in Fig. 1 (b). More visual explanations of MSPP are provided in Appendix B and Appendix C.

To enhance the efficiency of our planning process and facilitate long-term strategic planning, we utilize the recurrent state-

space model (RSSM), in a latent space that learns the environmental model [10,11]. This approach allows for the encoding of 
high-dimensional input observations into a low-dimensional latent state space for planning. The learned world model can then be 
effectively utilized by multiple pruned agents to optimize policies that aim to maximize cumulative rewards. Each parallel pruning 
policy is trained independently using the same latent world model. Once the training phase is completed, these policies provide their 
respective optimal policy distributions for the current state. Finally, the top-M actions of the pruning policies within this latent world 
model are selected to produce the final policy outputs, as illustrated in Fig. 2. In experiments conducted on the DeepMind Control 
Suite reinforcement learning benchmark platform, the results indicate that the MSPP framework enhances the final performance 
through diversifying strategy distribution, surpassing the state-of-the-art Dreamer algorithm.

The remainder of this paper is organized as follows. Section 2 provides an overview of related research work. In Section 3.1, we 
define the basic symbols, and in Section 3.2, we derive the loss function for updating the world model. In Section 3.3, we first analyze 
the convergence and sampling methods of the pruning strategy in tabular form and then provide the loss functions for updating the 
policy and value function. In Section 3.4, we detail how to merge from the policy distribution based on the trained pruning policy 
to obtain the final action for interacting with the environment. Section 4 presents the experimental results and in Section 5, we 
2

summarize the paper.
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Fig. 2. Diagram of the MSPP. Once the current decision state is inputed into the MSPP, it first performs parallel inference training through multiple pruning policies 
and then selects the top-M ranked results to determine the final outcome.

2. Related work

We modularize our work into four components: the world model component, the multi-step component, research on multiple 
models, and work related to cross-entropy fusion.

The world model can be saved in a table by recording the counting of the state-action-next-state counts [12,13]. With the prosperity 
of neural networks, it has been widely employed for fitting one-step transitions [14]. The optimizer object can be designed to minimize 
different objective functions, such as the mean squared prediction error of the world model on the next state [15], the multi-step 
L2-norm [16], or to minimize the KL divergence between the world model and the real environment [11,17]. Theoretical analysis 
suggests that the value loss increases quadratically as the horizon grows, which is why researchers only use short rollouts [14,18]. 
However, incorporating appropriate noise in the state is more relevant to the real environment [19]. To address this, researchers have 
adopted truncated imaginary model rollout length to avoid unreliable fake samples in policy optimization [20,21], but this sacrifices 
the ability to plan for the long term. This paper aims to enhance the final policy performance by considering diverse perspectives, 
such as the model bias that is inevitable to eliminate. To achieve this, a partially stochastic sequential latent variable model, RSSM 
[11], is applied for multiple time steps [9,22].

Repetition of actions in an environment can be seen as an abstraction of actions. In Hierarchical Reinforcement Learning, design-

ing different abstract actions is typically modeled as a Semi-Markov process [23]. However, Hierarchical Reinforcement Learning 
breaks down complex problems by dividing them into several sub-problems and solving each one individually using a divide-and-

conquer approach [24]. In contrast, our diverse pruning policies aim to address the same problem of finding the optimal policy. In 
Multi-time Scale Markov Decision Processes [25], time-scale MDPs are divided into fast time-scale and slow time-scale, with each 
representing different task requirements. The method proposed in this paper aims to reduce the redundant action space, enhance 
the diversity of policies, and improve long-term planning and exploration capabilities, rather than focusing solely on abstract action 
or task decomposition as adopted in Hierarchical Reinforcement Learning. The n-hop Multiple Markovian Environments are quite 
similar to our work [26]; however, their focus is on using averaged Jensen-Shannon divergence to aggregate different Q-functions in 
order to improve the estimation accuracy of value functions in Q-Learning. Unlike our approach, these methods are all model-free 
reinforcement learning algorithms.

The concept of multi-sequential actions has been introduced in other model-based approaches, such as the multi-step dynamics 
model. This model is capable of directly outputting the execution sequence of actions [27], allowing for predicting outcomes of 𝐻
steps into the future. This approach helps prevent fake inputs to the policy and dynamic world model, reducing the accumulation of 
errors [27]. MPPVE uses multi-step plans instead of multi-step actions. This method aims to directly predict the future K-step action 
from the current state. However, the presence of biases and significant uncertainties in the world model poses challenges in acquiring 
such long-term planning capabilities. In contrast, our approach addresses the fake state problem by repeating actions, which is a 
more realistic approach than attempting to predict future actions. In our world model, transition dynamics are applied at each step, 
rather than relying on anticipation of future actions. This means that the gradients at the repeat step do not affect the decision, as 
they are determined by the policy at the decision step. Our method also differs from the MPPVE approach [28] in that it employs a 
leapfrog approach for calculating gradients, rather than minimizing gradient computation on fake states by predicting K steps ahead. 
Additionally, our method is not simply an improvement of a single pruning policy, but rather an integration of a combination of 
3
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Ensemble Reinforcement Learning is a method that aims to increase diversity by utilizing multiple base learners. While traditional 
ensemble strategies focus on Q-function, reward, and loss function [29], these are all vectors or scalars, similar to ensemble learning in 
supervised learning. However, our MSPP ensemble focuses on the distribution of policies. In order to effectively implement ensemble 
learning methods, it is crucial to generate diverse base learners and integrate them. This can be achieved through various methods 
such as using different training algorithms [29], varying weight initialization [30], and utilizing different metrics to measure the 
distance between policies within the population [31–33]. These techniques promote diversity within the same state-action space. 
In contrast, our approach generates diversity by designing different spaces through restricting the action space. When it comes to 
integrating base learners, there are several common methods such as voting, optimal combination, binning, aggregation, weighted 
aggregation, stacking, and Boltzmann multiplication [29]. However, we have developed a new cross-entropy optimization method 
that can effectively integrate both discrete and continuous action spaces.

Model Predictive Control (MPC) [34] is a widely adopted technique for leveraging a model to determine an optimal sequence 
of actions. This method involves generating and evaluating multiple action sequences, with the optimal sequence being selected 
based on the reward provided by the world model. Despite the presence of a well-performed world model, there’s no guarantee of 
deriving an effective policy [3]. Therefore, research on value-aware [35] and policy-aware [36] approaches focus on loss functions 
[3]. They are tailored to synchronize the training of dynamic models with policy development. This paper focuses on the potential for 
diverse policies to improve the performance of the final policy, rather than concentrating on model bias or policy alignment. MSPP 
employs the learned dynamics model to generate an ensemble of diverse pruning plans, distinguishing itself from ensemble learning 
approaches that utilize multiple world models [17,37]. Our approach involves the integration of multiple policies for controlling a 
single world model. In Appendix D, we have included a comparison diagram of the system architecture. Unlike methods that utilize 
policy sampling across the entire forecasted trajectory [38,39], our method involves sampling exclusively from the initial time-step 
distributions specified by each pruning policy after their training. It is achieved without the implementation of policy rollout over 
multiple steps.

3. Methodology

The architecture of the MSPP is depicted in Fig. 2, consisting of two main components: the world model and policy learning. The 
policy learning is further divided into two parts: a group of multi-pruning agents for a comprehensive understanding of the world 
model, and the cross-entropy fusion method for aggregating diverse information.

3.1. Preliminaries

MDPs can be defined by a tuple ( , ,  , , 𝛾), providing a mathematical framework for our algorithm. The state space  is a 
set of states 𝑠, while the action space  is a set of action 𝑎. The state transition function is defined as 𝑃 ∶  × → Δ(), where 
Δ() represents the space of probability distribution over  . The reward function  ∶  × →

[
0,𝑅max

]
assigns a reward 𝑟(𝑠, 𝑎) to 

an action 𝑎 in a state 𝑠. The discount factor 𝛾 ∈ [0, 1) defines a horizon for the problem. The objective of reinforcement learning is 
to maximize the total expected cumulative reward. In practical problems, we typically only have access to observations 𝑜 ∈  rather 
than the full state. These types of problems are usually modeled as partially observable Markov decision processes (POMDPs) [40].

The process for Fig. 2 is as follows: When an observation 𝑜𝑡 is received from the environment, the world model first encodes it 
into a low-dimensional state 𝑠𝑡. The pruning agent then plans and learns from this state 𝑠𝑡 using the world model’s state transitions 
and rewards function. Once the agent has updated its parameters, it provides a set of action distribution {𝜋(𝑎𝜏 ∣ 𝑠𝜏 )} for the state 𝑠𝑡. 
The cross-entropy method then adds noise to this distribution to create an action sequence, which is then used to interact with the 
world model. Based on the rewards given by the world model, the final action is selected.

3.2. World model

For effective planning, it is crucial to evaluate thousands of action sequences at each time step for the agent. We employ a RSSM, 
enabling forward predictions entirely within the low-dimension latent state space. Model-based reinforcement learning involves the 
agent collecting data through its interaction with the environment, and using this data to learn a world model. This world model 
consists of two components: the transition function model 𝑠𝑡+1 ∼ 𝑓𝑝(𝑠𝑡, 𝑎𝑡) and the reward function model 𝑟𝑡+1 ∼ 𝑓𝑟(𝑠𝑡, 𝑎𝑡), as shown 
in Fig. 2. In RSSM, the transition function model 𝑠𝑡+1 ∼ 𝑓𝑝(𝑠𝑡, 𝑎𝑡) is divided into two parts: a deterministic part ℎ𝑡+1 = 𝑓

(
ℎ𝑡, 𝑠𝑡, 𝑎𝑡

)
and a stochastic part 𝑠𝑡 ∼ 𝑝 

(
𝑠𝑡 ∣ ℎ𝑡
)
, where ℎ𝑡 represents the deterministic state.

Agents sample data from the real environment to form the dataset  = {𝑜𝑡, 𝑎𝑡, 𝑟𝑡}𝑇𝑡=1, serving as the basis for next round of world 
model learning. The collected data consists of image observations. RSSM uses an encoder network to map the data from the observation 
space to a low-dimensional state space  →  . Subsequently, in the state space, a pruning agent performs parallel imagination. We 
denote the time steps of interacting with the real environment as 𝑡, and the time steps of interacting with the world model for 
imagination as 𝜏 . The transition probability in world model denoted as 

(
𝑠𝜏+1 ∣ 𝑠𝜏 , 𝑎𝜏

)
. The state transition is updated by a recurrent 

process that takes the previous latent state and hypothetical subsequent actions, updating the state within a low-dimensional latent 
space. This process establishes a mapping that associates each latent state with its corresponding reward.

Utilizing the encoder 𝑞
(
𝑠𝑡|𝑜≤𝑡, 𝑎<𝑡) and reward model 𝑝(𝑟𝑡 ∣ 𝑠𝑡), this approach establishes a bound on the data log-likelihood. As 
4

a result, the predictive losses for observations (𝑜1∶𝑇 |𝑎1∶𝑇 ) in Eq. (1) are optimized through gradient ascent.
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
(
𝑜1∶𝑇 ∣ 𝑎1∶𝑇

)
∶= ln𝑝

(
𝑜1∶𝑇 ∣ 𝑎1∶𝑇

)
∶= ln

𝑇∏
𝑡=1

𝑝
(
𝑜𝑡 ∣ 𝑠𝑡
)
𝑝
(
𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡

)
(1)

= ln𝔼𝑞(𝑠1∶𝑇 ∣𝑜1∶𝑇 ,𝑎1∶𝑇 )
[

𝑇∏
𝑡=1

𝑝
(
𝑜𝑡 ∣ 𝑠𝑡
)
𝑝
(
𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡

)
𝑞
(
𝑠𝑡 ∣ 𝑜≤𝑡, 𝑎 < 𝑡

) ]

≥ 𝔼𝑞(𝑠1∶𝑇 ∣𝑜1∶𝑇 ,𝑎1∶𝑇 )
[ 𝑇∑
𝑡=1

ln𝑝
(
𝑜𝑡 ∣ 𝑠𝑡
)
+ ln𝑝
(
𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡

)
− ln 𝑞
(
𝑠𝑡 ∣ 𝑜≤𝑡,𝑎<𝑡

) ]
=

𝑇∑
𝑡=1

(
𝔼𝑞(𝑠𝑡∣𝑜≤𝑡 ,𝑎<𝑡) [log𝑝(𝑜𝑡 ∣ 𝑠𝑡)]−𝐷𝐾𝐿

(
𝑞
(
𝑠𝑡 ∣ 𝑜≤𝑡, 𝑎<𝑡

) ||𝑝(𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡−1))).
The state transition model is based on a Gaussian normal distribution, with the mean and variance determined by a feedforward 

neural network parameterized by 𝜃. The function ℎ𝑡 = 𝑓𝜃
(
ℎ𝑡−1, 𝑠𝑡−1, 𝑎𝑡−1

)
is efficiently implemented using a Gated Recurrent Unit 

(GRU). This ensures that all observational data is comprehensively processed through the encoder’s sampling step, preventing any 
deterministic shortcuts in the reconstruction process. Similarly, the observation model 𝑜𝑡 ∼ 𝑝𝜃

(
𝑜𝑡 ∣ ℎ𝑡, 𝑠𝑡

)
is modeled as a normal 

distribution, with its parameters defined by a de-convolution network. The reward model 𝑟𝑡 ∼ 𝑝𝜃
(
𝑟𝑡 ∣ ℎ𝑡, 𝑠𝑡

)
is represented as a scalar 

within a Gaussian framework, with a feedforward neural network specifying its mean and variance parameters.

3.3. Pruning agents

The multi-pruning planning agents utilize the encoded latent state 𝑠𝑡 and the transition model to simulate trajectories 
{𝑠𝜏 , 𝑎𝜏 , 𝑟𝜏}𝜏+𝐻𝜏

, and employ the reward model for these trajectories, thereby updating the multi-pruning agents themselves. At any 
given state, the agent can generate a sequence of actions to be executed in the subsequent fixed steps. This sequence of actions, referred 
to as the repeated pruning policy, is denoted by 𝜋𝑖. Consequently, given a latent state 𝑠𝜏 , the pruning plan 𝐚𝑖𝜏 =

(
𝑎0𝜏 , 𝑎

1
𝜏 ,⋯ , 𝑎𝑖−1𝜏

)
, 

follows a distribution described in Eq. (2), where 𝑖 represents the number of repetition times.

𝐚𝑖𝜏 ∼ 𝜋
𝑖
(
⋅ ∣ 𝑠𝜏
)
. (2)

For each 𝑧 within the range 0 to 𝑖 − 1, the action anticipated by the latent world model at time step 𝜏 is defined from Eq. (3) to 
Eq. (5).

𝑎𝜏+𝑧 ∼ 𝜋
(
𝑎𝜏 ∣ 𝑠𝜏
)
, (3)

𝑠𝜏+𝑧+1 ∼ 
(
⋅ ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
, (4)

𝜋𝑖
(
𝐚𝑖𝜏 ∣ 𝑠𝜏
)
=

𝑖−1∏
𝑧=0

𝜋
(
𝑎𝜏 ∣ 𝑠𝜏+𝑧

)
= 𝜋(𝑎𝜏 ∣ 𝑠𝜏 ). (5)

For any finite state and action spaces, there is always an optimal policy that is both deterministic and stationary [26,41]. The 
pruning policy 𝜋𝑖

(
𝐚𝑖𝜏 ∣ 𝑠𝜏
)

reduces both the action space and the state space of the original MDPs. The optimal pruning policy 
is the optimal policy within its sub-space. Next, we will introduce how to obtain the optimal policy through the pruning policy 
iteration theorem by using tabular pruning policy evaluation and pruning policy improvement. Finally, we will present the network 
approximation pruning policy update equation and theorem.

3.3.1. Pruning policy evaluation

For any pruning policy 𝜋𝑖 ∈Π𝑖, the value function over 𝑖 steps, 𝑄𝜋𝑖 for pruning is defined in Eq. (6).

𝑄𝜋𝑖
(
𝑠𝜏 ,𝐚𝑖𝜏
)
=𝑄𝜋𝑖

(
𝑠𝜏 , 𝑎

0
𝜏 , 𝑎

1
𝜏 ,⋯ , 𝑎𝑖−1𝜏

)
= 𝔼𝑝,𝑟,𝜋𝑖

[
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖
∞∑
𝑧=0

𝛾𝑧𝑟𝑡+𝑖+𝑧

]

= 𝔼𝑝,𝑟

[
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖𝔼𝐚𝑖
𝜏+𝑖∼𝜋

𝑖

[
𝑄𝜋𝑖
(
𝑠𝜏+𝑖,𝐚𝑖𝜏+𝑖

)]]

= 𝔼𝑝,𝑟

[
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧

]
+ 𝛾𝑖𝔼𝑝

[
𝑉
(
𝑠𝜏+𝑖
)]
. (6)

Thus, the extended Bellman backup operator, denoted as  𝜋𝑖 , can be expressed in Eq. (7).

𝜋𝑖
(

𝑖
) [

𝑖−1∑
𝑧

]
𝑖
[ ( )]
5

 𝑄 𝑠𝜏 ,𝐚𝜏 = 𝔼𝑝,𝑟
𝑧=0

𝛾 𝑟𝜏+𝑧 + 𝛾 𝔼𝑝 𝑉 𝑠𝜏+𝑖 . (7)
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Lemma 1 (Pruning Policy Evaluation). Consider a pruning policy 𝜋𝑖 with action space 𝑖 ⊂ and state space  𝑖 ⊂  . Let there be an initial 
function 𝑄0 ∶  𝑖 ×𝑖 →ℝ with a finite action space |𝑖| <∞. By iteratively updating 𝑄𝑛 to 𝑄𝑛+1 using 𝑄𝑛+1 =  𝜋𝑖𝑄𝑛 for all 𝑛 ∈ ℕ, the 
sequence 𝑄𝑛 converges to the value of pruning policy 𝜋𝑖 as 𝑛 →∞.

Proof of Lemma 1. For any iteration 𝑛 ∈ ℕ, the update from 𝑄𝑛 to 𝑄𝑛+1 through  𝜋𝑖 yields Eq. (8) for all 𝑠𝜏 ∈  𝑖 and 𝐚𝑖𝜏 ∈𝑖.

𝑄𝑛+1
(
𝑠𝜏 ,𝐚𝑖𝜏
)
=  𝜋𝑖𝑄𝑛

(
𝑠𝜏 ,𝐚𝑖𝜏
)
=

𝔼𝑝,𝑟

[
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖𝔼𝐚𝑖
𝜏+𝑖∼𝜋

𝑖

[
𝑄𝜋𝑖
(
𝑠𝜏+𝑖,𝐚𝑖𝜏+𝑖

)]]
. (8)

To assess convergence by Eq. (9).‖‖‖𝑄𝑛+1 −𝑄𝜋𝑖‖‖‖∞
= max
𝑠𝜏∈ 𝑖 ,𝐚𝑖𝜏∈𝑖

|||𝑄𝑛+1
(
𝑠𝜏 ,𝐚𝑖𝜏
)
−𝑄𝜋𝑖

(
𝑠𝜏 ,𝐚𝑖𝜏
)|||

= max
𝑠𝜏∈ 𝑖 ,𝐚𝑖𝜏∈𝑖

𝛾𝑖
||||𝔼𝑝,𝜋𝑖 [𝑄𝑛

(
𝑠𝜏+𝑖,𝐚𝑖𝜏+𝑖

)
−𝑄𝜋𝑖

(
𝑠𝜏+𝑖,𝐚𝑖𝜏+𝑖

)]||||
≤ max
𝑠𝜏∈ 𝑖 ,𝐚𝑖𝜏∈𝑖

𝛾𝑖
‖‖‖𝑄𝑛 −𝑄𝜋𝑖‖‖‖∞

= 𝛾𝑖 ‖‖‖𝑄𝑛 −𝑄𝜋𝑖‖‖‖∞ . (9)

The second equation eliminates the immediate rewards from step 𝜏 to step 𝜏 + 𝑖. Therefore, 𝑄𝑛 = 𝑄𝜋𝑖 becomes a fixed point 
under this update mechanism, guaranteeing that the sequence 𝑄𝑛 converges to the value function of the pruning policy 𝜋𝑖 , within 
the subspace as 𝑛 →∞. □

3.3.2. Pruning policy improvement

The pruning policy 𝜋𝑖 can be updated by Eq. (10).

𝜋𝑖𝑛𝑒𝑤 = arg max
𝜋𝑖∈Π𝑖

∑
𝐚𝑖𝜏∈𝑖

𝜋𝑖
(
𝐚𝑖𝜏 ∣ 𝑠𝜏
)
𝑄𝜋𝑖

𝑜𝑙𝑑
(
𝑠𝜏 ,𝐚𝑖𝜏
)
. (10)

For each state, 𝜋𝑖𝑛𝑒𝑤 achieves greater value than 𝜋𝑖
𝑜𝑙𝑑

after applying Eq. (10). This method ensures that the policy is gradually 
refined to maximize the expected return, as represented by the 𝑄 value, with the pruning policy’s action and state space.

Lemma 2 (Pruning Policy Improvement). Assume the action space 𝑖 ⊂ and the state space  𝑖 ⊂  define the domains of the pruning 
policy. For any policy 𝜋𝑖

old
∈ Π𝑖, mapping  𝑖 to 𝑖 within a finite action space |𝑖| <∞, updating 𝜋old according to Eq. (10) ensures that 

𝑄𝜋𝑖new (𝑠𝜏 , 𝐚𝑖𝜏 ) ≥𝑄
𝜋old (𝑠𝜏 , 𝐚𝑖𝜏 ) for all 𝑠𝜏 ∈  𝑖 and 𝐚𝑖

𝜏
∈𝑖.

Proof of Lemma 2. Starting from the definition of the state value function, we obtain Eq. (11) for any state 𝑠𝜏 ∈  𝑖.

𝑉
𝜋𝑖

old
(
𝑠𝜏
)
=
∑

𝐚𝑖𝜏∈𝑖

𝜋𝑖
old

(
𝐚𝑖𝜏 ∣ 𝑠𝜏
)
𝑄𝜋old
(
𝑠𝜏 ,𝐚𝑖𝑡
)

≤
∑

𝐚𝑖𝜏∈𝑖

𝜋𝑖
new

(
𝐚𝑖𝜏 ∣ 𝑠𝜏
)
𝑄𝜋old
(
𝑠𝜏 ,𝐚𝑖𝑡
)
. (11)

Expanding upon this inequality gives rise to Eq. (12) for every 𝑠𝜏 ∈  𝑖 and 𝐚𝑖
𝜏
∈𝑖.

𝑄
𝜋𝑖

old
(
𝑠𝜏 ,𝐚𝑖𝜏
)
= 𝔼𝑝,𝑟

[
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖𝑉 𝜋old
(
𝑠𝜏+𝑖
)]

≤𝔼𝑝,𝑟
⎡⎢⎢⎣
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖
∑

𝐚𝑖
𝜏+𝑖∈

𝑖

𝜋𝑖
new

(
𝐚𝑖𝜏+𝑖 ∣ 𝑠𝜏+𝑖

)
𝑄𝜋old
(
𝑠𝜏+𝑖,𝐚𝑖𝜏+𝑖

)⎤⎥⎥⎦
=𝔼𝑝,𝑟,𝜋new

[2𝑟−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾2𝑟𝑉 𝜋old
(
𝑠𝜏+2𝑟
)]

⋮ [ ∞∑
𝑧

]
𝜋new
(

𝑖
)

6

=𝔼𝑝,𝑟,𝜋new
𝑧=0

𝛾 𝑟𝜏+𝑧 =𝑄 𝑠𝜏 ,𝐚𝜏 . (12)
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This demonstrates that the policy update from 𝜋𝑖
𝑜𝑙𝑑

to 𝜋𝑖𝑛𝑒𝑤 ensures an improvement or at least equality in the 𝑄 value across all 
states and actions within the pruning policy’s operational framework. □

3.3.3. Pruning policy iteration

Pruning Policy iteration alternates between pruning policy evaluation and pruning policy improvement until the pruning policy 
𝜋𝑖
𝑛

converges to the optimal value 𝜋𝑖∗ within its corresponding policy space Π𝑖.

Theorem 1 (Pruning Policy Iteration). Initiating with any preliminary mapping 𝜋𝑖0 ∈ Π𝑖 ∶  𝑖 →𝑖 where |𝑖| <∞, the corresponding 𝑄𝜋𝑖𝑛

in the pruning policy evaluation phase can be calculated. Subsequently, update 𝜋𝑖𝑛 to 𝜋𝑖
𝑛+1 in the pruning policy improvement step for all 𝑛 ∈ℕ. 

This process ensures convergence of 𝜋𝑖
𝑛

to the optimal policy 𝜋𝑖, satisfying 𝑄𝜋𝑖∗
(
𝑠𝜏 ,𝐚𝑖𝜏
)
≥𝑄𝜋𝑖

(
𝑠𝜏 ,𝐚𝑖𝜏
)
, ∀𝑠𝜏 ∈  𝑖, 𝐚𝑖

𝜏
∈𝑖.

Proof. Given the monotonic increase of {𝑄𝜋𝑖𝑛} with respect to 𝑛 and the bounded nature of 𝜋𝑖 ∈Π𝑖, the sequence 𝜋𝑖 converges to a 
policy 𝜋𝑖∗. Leveraging Lemma 2, we can see that Eq. (13) holds for each 𝑠𝜏 ∈  𝑖 and any 𝜋𝑖 ∈Π𝑖.

𝑉 𝜋𝑖∗
(
𝑠𝜏
)
≥
∑

𝐚𝑖𝜏∈𝑖

𝜋𝑖
(
𝐚𝑖𝜏 ∣ 𝑠𝜏
)
𝑄𝜋𝑖∗
(
𝑠𝜏 ,𝐚𝑖𝜏
)
. (13)

This results in Eq. (14).

𝑄𝜋𝑖∗
(
𝑠𝑡,𝐚𝑖𝜏
)
= 𝔼𝑝,𝑟

[
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖𝑉 𝜋𝑖∗
(
𝑠𝜏+𝑖
)]

≥ 𝔼𝑝,𝑟
⎡⎢⎢⎣
𝑖−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾𝑖
∑

𝐚𝑖𝜏∈𝑖

𝜋𝑖
(
𝐚𝑖𝜏 ∣ 𝑠𝜏+𝑖

)
𝑄𝜋𝑖∗
(
𝑠𝜏+𝑖,𝐚𝑖𝜏

)⎤⎥⎥⎦
= 𝔼𝑝,𝑟,𝜋

[2𝑟−1∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧 + 𝛾2𝑟𝑉 𝜋𝑖∗
(
𝑠𝜏+2𝑟
)]

⋮

= 𝔼𝑝,𝑟,𝜋

[ ∞∑
𝑧=0

𝛾𝑧𝑟𝜏+𝑧

]
=𝑄𝜋𝑖

(
𝑠𝜏 ,𝐚𝑖𝜏
)
. (14)

Conclusively prove that 𝜋𝑖∗ represents the optimal policy in Π𝑖. □

3.3.4. Pruning policy with neural network

To broaden the applicability of the tabular pruning policy to a wider range of scenarios, including those with continuous or 
high-dimensional state-action spaces within world models, we utilize the actor-critic approximation approach outlined in [11]. This 
approach serves as the fundamental framework for developing planning agents, which are trained to optimize their decision-making 
processes by considering rewards projected along trajectories within a fixed to a horizon 𝐻 and anticipating the expected rewards 
of states extending beyond this horizon. Within this framework, the action model in Eq. (15) is parameterized by 𝜙, allowing for a 
more adaptable and scalable approach to policy learning in complex environments.

𝑎𝜏 ∼ 𝑞𝜙
(
𝑎𝜏 ∣ 𝑠𝜏
)
. (15)

The value model in Eq. (16), which is represented by the parameters 𝜓 , is designed to approximate the expected rewards over a 
fixed horizon 𝐻 from a given state.

𝑣𝜓
(
𝑠𝜏
)
≈ 𝔼𝑞(⋅∣𝑠𝜏)

(
𝑡+𝐻∑
𝜏=𝑡

𝛾𝜏−𝑡𝑟𝜏

)
, (16)

where 𝑡, 𝜏 , and 𝛾 are used to represent the current moment, subsequent moments within the trajectory imagination, and a discount 
factor, respectively. The action model generates a policy action based on the current state, while the value model estimates the 
expected rewards based on those policies. To optimize the learning process, a formula is used to balance the trade-off between high 
variance and high bias in value estimation [11,1]. This balanced approach improves the efficiency and effectiveness of the learning 
mechanism in complex environments. The update target is defined in Eq. (17).

V𝜆
(
𝑠𝜏
)
≐ 𝜆𝐻−1 V𝐻N

(
𝑠𝜏
)
+ (1 − 𝜆)

𝐻−1∑
𝑛=1

𝜆𝑛−1 V𝑛N
(
𝑠𝜏
)
, (17)

where the horizon parameter 𝐻 specifies the extent to which future events are considered in the policy’s decision-making process. ( )

7

The function V𝑚N 𝑠𝜏 in Eq. (18) represents the expected return from state 𝑠𝜏 over 𝑚 steps. The term ℎ is defined as min(𝜏 +𝑚, 𝜏 +𝐻).
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V𝑚N
(
𝑠𝜏
)
≐ 𝔼𝑞𝜃 ,𝑞𝜙

(
ℎ−1∑
𝑛=𝜏

𝛾𝑛−𝜏 𝑟𝑛 + 𝛾ℎ−𝜏𝑣𝜓
(
𝑠ℎ
))

. (18)

In the context of the MSPP world model, state transitions occur at a fixed timescale 𝑡𝑠 . The execution time of a decision by a 
pruning planning agent, denoted by 𝑡𝑖, is a multiple of 𝑡𝑠, with 𝐼 representing the set of all such multiples. The process of deriving an 
action 𝑎𝜏 ∼ 𝑞𝜙

(
𝑎𝜏 ∣ 𝑠𝜏
)

from the current state 𝑠𝜏 involves the agent’s actor at 𝑡𝑖 skipping states and mapping action 𝑖 − 1 times, then 
applying the chosen action 𝑖 times, as defined in Eq. (19).

𝜋𝑖(𝑎𝜏∶𝜏+𝐻 ∣ 𝑠𝜏∶𝜏+𝐻 ) =
{
𝑎𝜏 ∼ 𝑞𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)

𝑖 ∣
(
(𝜏 − 𝑡)∕𝑡𝑠

)
𝑎𝜏 = 𝑎𝜏−1 otherwise.

(19)

To ensure a cohesive optimization process, the objectives of pruning agents are determined by two key formulas that aim to 
achieve the goals of both the actor and value components. To maintain stable policy updates for pruning planning agents, it is crucial 
to keep the world model constant during their learning phase. The optimization objective for the actor component of a pruning agent 
is defined in Eq. (20).

𝐽
(
𝜋𝜙𝑖

)
= 𝔼𝑞𝜃 ,𝑞𝜙𝑖

[
𝑡+𝐻∑
𝜏=𝑡

V𝜆
(
𝑠𝜏
)]
. (20)

To refine the value formula, the optimization objective is set by Eq. (21).

𝐽
(
𝜋𝜓𝑖

)
= 𝔼𝑞𝜃 ,𝑞𝜓𝑖

[
𝑡+𝐻∑
𝜏=𝑡

1
2
‖‖‖𝑣𝜓𝑖 (𝑠𝜏)−V𝜆

(
𝑠𝜏
)‖‖‖2
]
. (21)

The Multi Pruning Policy Gradient Theorem provides a structured approach for calculating the value function 𝑉 𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)

gradients, 
allowing for the refinement of these objectives.

Theorem 2 (Multi-Step Pruning Policy Gradient). For any MDP, the gradient of value function 𝑉 relative to policy parameters is computed 
as the expected gradient of the action-value function 𝑄 across state and action distributions in Eq. (22).

∇𝜙𝑖
𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)
= 𝔼𝑠𝜏∼𝜇𝑟𝑖,𝑎𝜏∼𝜋𝑖𝜙𝑖

[
𝑄
𝜋𝑖
𝜙𝑖 (𝑠𝑟, 𝑎𝑟)∇𝜙𝑖

ln𝜋𝑖
𝜙𝑖

(
𝑎𝑟 ∣ 𝑠𝑟
)]
. (22)

The expression ∇𝜙𝑖
𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)

represents the gradient of the value function 𝑉 𝜋𝑖
𝜙 for state 𝑠𝜏 , with respect to the pruning policy parameters 

𝜙𝑖 in the 𝑖th step, where 𝑠𝑟 and 𝑎𝑟 refer to the state and action of the multi-pruning sub-space. 𝑠 ∼ 𝑢𝑟𝑖 represents the pruning discount 
state distribution of the sub-space. The policy 𝜋𝑖 determines the probability of taking an action given a state and its parameters. The term 
𝔼𝑠∼𝜇𝑟𝑖,𝑎𝜏∼𝜋𝑖𝜙𝑖

represents the expected value over the states and actions sampled from the distribution 𝜇𝑟𝑖 and the policy 𝜋𝑖
𝜙𝑖

.

Proof. See Appendix A. □

3.4. Cross entropy fusion

Following Theorem 2, the pruning policy 𝜋𝑖
𝜙𝑖

can be updated by independently adjusting the network parameters 𝜙𝑖 separately 
for each 𝑖 ∈ 𝐼 . Once the pruning policies have been trained, they can be used to infer different perspectives within the same world 
model. At time step 𝑡, given the latent state 𝑠𝜏 is inputted into pruning policies {𝜋𝑖

𝜙𝑖
}, and the output of the pruning policy network 

is the distribution set {𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
}. To verify whether different pruning policies have a distinct understanding of the given state 𝑠𝜏 , 

it is necessary to limit the merge to only the action distribution {𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
} for the given state 𝑠𝜏 , rather than the entire policy 

{𝜋𝑖
𝜙𝑖
} for rollout, which would introduce other latent states.

We denote the noise sequence at time-step 𝜏 with horizon 𝐻 as 𝜹𝜏 =
{
𝛿𝜏 , 𝛿𝜏+1,… , 𝛿𝜏+𝐻

}
, initializing the noise distribution as 

a standard normal distribution. Similarly, we define 𝑎𝑖,𝑗
𝜏∶𝜏+𝐻 =

{
𝑎
𝑖,𝑗
𝜏 + 𝛿𝑖,𝑗𝜏 , 𝑎

𝑖,𝑗
𝜏 + 𝛿𝑖,𝑗

𝜏+1,… , 𝑎
𝑖,𝑗
𝜏 + 𝛿𝑖,𝑗

𝜏+𝐻

}
. The optimization process for 

pruning agents involves generating and utilizing trajectories to inform the decision-making of cross-entropy planning agents, as shown 
in Eq. (23) and Eq. (24).

𝑎
𝑖,𝑗

𝜏∶𝜏+𝐻, 𝑠
𝑖,𝑗

𝜏∶𝜏+𝐻 ∼ 𝑞𝜙𝑖,𝜃
(
𝑎𝜏∶𝜏+𝐻, 𝑠𝜏∶𝜏+𝐻 ∣ 𝑠𝜏

)
. (23)

This equation describes the generation of action and state sequences over a horizon 𝐻 for each pruning agent 𝑖 and each sampling 
instance 𝑗, based on the current state 𝑠𝜏 and governed by the pruning policy parameter 𝜙𝑖 and the world model parameter 𝜃.

𝑡𝑟𝑖,𝑗 ≐
{
𝑎𝑖,𝑗𝜏 , 𝑠

𝑖,𝑗
𝜏

}𝑡+𝐻
𝜏=𝑡 , (24)

where 𝑡𝑟𝑖,𝑗 represents the trajectory of actions and states from time 𝑡 to 𝑡 + 𝐻 for the 𝑖-th pruning agent on the 𝑖-th sampling. { }

8

The decision-making process of cross-entropy planning agents leverages these trajectories, denoted as 𝑡𝑟𝑖,𝑗 ∣ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , which 
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are sampled 𝐽 times from the current state 𝑠𝜏 by all pruning agents 
{
𝑞𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
∣ 𝑖 ∈ 𝐼
}

. This approach allows the cross-entropy 
planning method to navigate within the constraints set by the step scale of the world model 𝑡𝑠 and the capabilities of the diverse 
pruning agents {𝑡𝑖}. The timing for actions executed by the cross-entropy planning agent is thus specified in Eq. (25).

𝑡∗ ∈
{
𝑡𝑠,min

𝑖

(
𝑡𝑖
)}⋃{

𝑘 ⋅ 𝑖 ⋅ 𝑡𝑠 ∣ 𝑘, 𝑖 ∈ ℕ+}. (25)

In this planning scheme, the expected reward within a given noise 𝜹𝜏 =
{
𝛿𝜏 , 𝛿𝜏+1,… , 𝛿𝜏+𝐻

}
is expressed in Eq (26).

𝑅𝜃(𝑠𝜏 ,𝜹𝜏 ) = 𝔼

[
𝜏+𝐻∑
𝑧=𝜏

𝛾𝑧𝑟
(
𝑠𝑧, 𝑎𝜏 + 𝛿𝑧

)]
, (26)

where 𝑠𝑧+1 ∼ 𝑝𝜃(𝑠𝑧+1 ∣ 𝑠𝑧, 𝑎𝜏 +𝛿𝑧). The policy of the cross-entropy method iteratively refines the search for the optimal action sequence 
at each timestep, 𝜏 , as delineated in Equation (27).

𝑎∗ = arg max
𝑎𝑡∶𝑡+𝐻

𝔼
[
𝑅𝜃
(
𝑠𝜏
)]
. (27)

According to the theory proposed by [42], the Gaussian distribution for action distribution can be represented as natural 
exponential families, with the form 𝑓𝑤𝑗 (𝛿

𝑗 ) = exp
(
𝑤𝑇 Γ(𝛿) −𝐾(𝑤)

)
. This distribution is parametrized by 𝑤𝑗 ∈𝑊 , and is initial-

ized by {𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
}. The function 𝐾(𝑤) is defined as ln ∫Δ exp

(
𝑤𝑇 Γ(𝛿)

)
𝜈(𝑑𝛿), where 𝜈 is a discrete measure on Δ. Note that 

∇𝐾(𝑤) = 𝐸𝑤[Γ(𝛿)]. We can utilize importance sampling 𝑎𝑗+1(𝛿𝑗 ) = 𝑆(𝑅𝜃(𝛿𝑗 ))𝑓𝑤𝑗 (𝛿
𝑗 )∕𝐸𝑎𝑗 [𝑆(𝑅𝜃(𝛿

𝑗 ))] to form the process of choos-

ing Top-M. Here 𝑆(⋅) is a positive increasing (possibly iteration-varying) function. When 𝑗 →∞, the action 𝑎𝑗 → 𝑎∗, therefore, the 
objective is to minimize the Kullback-Leibler (KL) divergence between 𝑎𝑗+1 and 𝑓𝑤𝑗 , as detailed in Eq. (28).

𝑤𝑗+1 = arg min
𝑤∈𝑊

𝔻𝐾𝐿
(
𝑎𝑗+1, 𝑓𝑤𝑗

)
, (28)

where the KL divergence 𝔻 
(
𝑎𝑗+1, 𝑓𝑤

)
is defined as ∫Δ ln

(
𝑎𝑗+1(𝛿)∕𝑓𝑤(𝛿)

)
𝑎𝑗+1(𝛿)𝜈(𝑑𝑥). In practice, we utilize Eq. (29) to update 𝑓𝑤.

𝑎̃𝑗+1(𝛿) = 𝛼𝑗𝑎𝑗+1(𝛿) +
(
1 − 𝛼𝑗
)
𝑓𝑤𝑗 (𝛿), (29)

where 𝛼 ∈ (0, 1] is the smoothing parameter. The mean vector function is defined as 𝑚(𝑤) ∶= 𝔼(Γ(𝛿)). Thus, 𝑚 
(
𝑤𝑗+1
)
=𝐸𝑤𝑗+1 [Γ(𝛿)] =

𝐸𝑔𝑗+1 [Γ(𝛿)], as described in Eq. (30).

𝑚
(
𝑤𝑗+1
)
= 𝛼𝑗

𝐸𝑎𝑗 [𝑆(𝑅𝜃(𝛿))Γ(𝛿)]

𝐸𝑎𝑗 [𝑆(𝑅𝜃(𝛿))]
+
(
1 − 𝛼𝑗
)
𝑚
(
𝑤𝑗

)
. (30)

The difference between 𝑚𝑤𝑗+1 and 𝑚𝑤𝑗 is expressed in Eq. (31).

𝑚
(
𝑤𝑗+1
)
−𝑚
(
𝑤𝑗

)
= 𝛼𝑗

𝐸𝑎𝑘

[
𝑆(𝑅(𝛿))

(
Γ(𝛿) −𝑚

(
𝑤𝑗

))]
𝐸𝑎𝑘 [𝑆(𝑅(𝛿))]

= − 𝛼𝑘∇𝑤𝔻
(
𝑎𝑘+1, 𝑓𝑤

)|||𝑤=𝑤𝑘 . (31)

Therefore, the direction of update of the mean vectors at each step is in the direction of mining KL between 𝑎𝑗+1 and 𝑓𝑤𝑗 . This 
process is shown in Algorithm 1. The overall process of iteration with the environment is shown in Algorithm 2.

4. Experiments

In this section, we focus on three primary questions: 1) Can our proposed pruning strategy effectively capture a diverse under-

standing of the environment? 2) How does the performance of our approach compare to existing state-of-the-art (SOTA) reinforcement 
learning methods for understanding the world model? 3) What is the impact of varying the values of 𝑖 in the pruning policy on our 
approach?

4.1. Experiment settings

We evaluated the effectiveness of the MSPP bi-level planning algorithm, which utilizes parallel multi-step pruning agents. Our 
initial focus is on a comprehensive assessment of a single multi-step pruning agent, examining its impact on performance to clarify 
the pruned agent’s understanding of a consistent world model. We then investigate the influence of each pruning agent on overall 
performance and illustrate our findings within the context of the DeepMind Control Suite [43,44]. Our analysis also compares our 
approach to established benchmarks in MBRL and various sampling policies. Our main interest is in deciphering the latent state space 
encapsulated by the world model. To this end, we draw comparisons with three distinct methods: a Cross-Entropy Method (CEM), 
which operates independently of a world model; the Planet method, which leverages a world model to refine policy; and a technique 
9

specifically optimized for reinforcement learning that incorporates a world model. The differences between the various comparative 
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Algorithm 1 Cross Entropy Method via Pruning Agents.

World Model: Hyper-parameters:

Transition 𝑞𝜃
(
𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡−1

)
Optimization times 𝑈

Reward 𝑞𝜃
(
𝑟𝑡 ∣ 𝑠𝑡
)

Time scales 𝐼

Action Pool
{
𝑞𝜙𝑖

(
𝑎𝑡 ∣ 𝑠𝑡
)
∣ 𝑖 ∈ 𝐼
}

Imagination horizon 𝐻

Value Pool
{
𝑣𝜓𝑖

(
𝑠𝑡
)
∣ 𝑖 ∈ 𝐼
}

Candidates per iteration 𝐽

Top candidates to fit 𝐾

1: Initialize 𝑠0 with current state 𝑠𝑡
2: for optimization iteration 𝑢 = 0 ⋯ 𝑈 do

3: for action sequence 𝑗 = 1...𝐽
4: if 𝑢 = 0 then

5: for 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒 𝑖 𝑖𝑛 𝐼

6: 𝑎
𝑖,𝑗

≤𝐻 , 𝑠
𝑖,𝑗

≤𝐻+1 ∼ 𝑞𝜙𝑖 ,𝜃
(
𝑎≤𝐻 , 𝑠≤𝐻+1 ∣ 𝑠0

)
7: 𝑅𝑖,𝑗 =

∑𝑡+𝐻+1
𝜏=𝑡+1 𝔼 [𝑝𝜃 (𝑟𝜏 ∣ 𝑠𝑖,𝑗𝜏 )]

8: end for

9: 𝑅𝑗 ←
{
𝑅𝑖,𝑗 ∣ 𝑖 ∈ 𝐼

}
10: else

11: 𝑎
𝑗

≤𝐻 ∼ 𝑞
(
𝑎𝑡∶𝑡+𝐻
)

12: 𝑠
𝑗

≤𝐻 ∼ 𝑞𝜃
(
𝑠≤𝐻 ∣ 𝑎≤𝐻 , 𝑠0

)
13: 𝑅𝑗 =

∑𝑡+𝐻+1
𝜏=𝑡+1 𝔼 [𝑝𝜃 (𝑟𝜏 ∣ 𝑠𝑗𝜏)]

14: end if
15: end for

16:  ← argsort1∶𝐾
{
𝑅𝑗
}𝐽
𝑗=1

17: 𝜇𝑡∶𝑡+𝐻 = 1
𝐾

∑
𝑘∈ 𝑎

𝑘
𝑡∶𝑡+𝐻

18: 𝜎𝑡∶𝑡+𝐻 = 1
𝐾−1
∑

𝑘∈
|||𝑎𝑘𝑡∶𝑡+𝐻 − 𝜇𝑡∶𝑡+𝐻

|||
19: 𝑞

(
𝑎𝑡∶𝑡+𝐻
)
←Normal

(
𝜇𝑡∶𝑡+𝐻 ,𝜎

2
𝑡∶𝑡+𝐻 𝕀
)

20: end for

21: 𝑎𝑡 ← 𝜇𝑡
22: return 𝑎𝑡

Algorithm 2 Multi-Step Pruning Policy (MSPP).

World Models: Hyper-parameters:

Representation 𝑝𝜃
(
𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡−1 , 𝑜𝑡

)
Seed episodes 𝑆

Transition 𝑞𝜃
(
𝑠𝑡 ∣ 𝑠𝑡−1, 𝑎𝑡−1

)
Time scales 𝐼

Reward 𝑞𝜃
(
𝑟𝑡 ∣ 𝑠𝑡
)

Collect interval 𝐶

Action Pool
{
𝑞𝜙𝑖

(
𝑎𝑡,𝑖 ∣ 𝑠𝑡

)
∣ 𝑖 ∈ 𝐼
}

Batch size 𝐵

Value Pool
{
𝑣𝜓,𝑖
(
𝑠𝑡
)
∣ 𝑖 ∈ 𝐼
}
𝑖

Sequence length 𝐿

Action 𝑞𝜔
(
𝑎𝑡 ∣ 𝑠𝑡,

{
𝑎𝑡,𝑖 ∣ 𝑖 ∈ 𝐼

})
Imagination horizon 𝐻

Value 𝑣𝜅
(
𝑠𝑡
)

Training repeat 𝐺

1: Initialize dataset  with random seed episodes.

2: Initialize parameters 𝜃, {𝜙𝑖} , {𝜓𝑖} of neural networks randomly.

3: while not converged do

4: for 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑒𝑝 𝑐 = 1..𝐶
5: Draw 𝐵 data sequences {(𝑎𝑡, 𝑜𝑡, 𝑟𝑡)}𝑘+𝐿𝑡=𝑘 ∼
6: Compute model states 𝑠𝑡 ∼ 𝑝𝜃

(
𝑠𝑡 ∣ 𝑠𝑡−1 , 𝑎𝑡−1 , 𝑜𝑡

)
7: Update 𝜃 using representation learning.

8: for 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑒𝑝 𝑔 = 1..𝐺
9: for 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒 𝑖 𝑖𝑛 𝐼

10: Imagine trajectories {(𝑠𝜏 , 𝑎𝜏,𝑖)}𝑡+𝐻𝜏=𝑡
11: Predict rewards 𝔼 (𝑞𝜃 (𝑟𝜏 ∣ 𝑠𝜏))
12: Predict values 𝑣𝜓𝑖

(
𝑠𝜏
)

13: Update 𝜙𝑖 and 𝜓𝑖
14: end for

15: end for

16: end for

17: 𝑜1 ← 𝑒𝑛𝑣.𝑟𝑒𝑠𝑒𝑡()
18: for 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 = 1..𝑇
19: Compute 𝑠𝑡 ∼ 𝑝𝜃

(
𝑠𝑡 ∣ 𝑠𝑡−1 , 𝑎𝑡−1, 𝑜𝑡

)
20: Compute 𝑎𝑡 from Algorithm 1

21: Add experience noise to action.

22: 𝑟𝑡, 𝑜𝑡+1 ← 𝑒𝑛𝑣.𝑠𝑡𝑒𝑝(𝑎𝑡)
23: Extend dataset  ← ⋃{(𝑜𝑡, 𝑎𝑡, 𝑟𝑡)𝑇𝑡=1}
24: end for

25: end while

experiments are as follows: the cross-entropy method and Planet sample actions from a random distribution, the Dreamer method 
10

samples actions from the learned policy distribution of the agent, and MSPP samples actions from the diversity policy distribution.
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Fig. 3. The results conducted across varying action pruning scales, denoted as 𝑖, yielded insightful outcomes. Specifically, 𝑖 = 1 corresponds to the original Dreamer 
algorithm, while other values of 𝑖 represent the application of different pruning actions on their respective pruning scales. “Loss” in this context refers to the reward 
loss during the learning of the world model.

In all experiments, the form of input consists of third-person camera images with dimensions of 64 × 64 × 3 pixels. Uniform 
hyperparameters are applied across all tasks. The parameter settings for MSPP are the same as those for Dreamer, except for any 
noted differences. To speed up the training process, an initial dataset comprising 𝑆 = 5 episodes is generated through the execution 
of 500 steps with random actions, all in parallel. Additionally, the Recurrent State-Space Model (RSSM) is trained in parallel. The 
size of the replay buffer is set to 1,000,000, while the batch size utilized for sampling is 51. The code is available as open source at 
https://github .com /tinyzqh /MSPP, ensuring that all performance evaluations are carried out using a standardized set of parameters, 
with the only modification of the names of the environments as needed.

4.2. Analyzing multi-step pruning agents

To validate whether pruning strategies can lead to a diverse understanding of the same environment model, we independently 
execute each pruning strategy. This means that we run each pruning strategy separately to see if it can produce different results. 
Intuitively, the variation in the reward loss curve within the environment model reflects the agent’s differing perceptions of the 
environment. Pruning agents are trained to maximize cumulative rewards based on latent imagination samples derived from the 
learned world model. The architecture includes a hidden layer with 200 units, and the imagination horizon is set at 𝐻 = 15 for each 
distinct perspective pruning actor. The learning rates for both actor and value models are uniformly set at 8 × 10−5. The results from 
Dreamer show that final performance is greatly affected by the control frequency hyperparameters, with a setting of 2 being the most 
effective for various tasks. Therefore, we use a control frequency of 2 in our approach.

Fig. 3 presents the results of the multi-perspective actor experiment, showing the episode rewards obtained during the training at 
different action pruning scales. The shaded areas around the lines represent the standard deviation calculated from two different seeds. 
Our findings indicate that the reward losses under different pruning policies exhibit a trend of diverse divergence, demonstrating 
varied understandings of the environment. Notably, the final control performance does not show a monotonic relationship with the 
quality of reward loss learning. Specifically, as illustrated in Fig. 3 (d), despite a significant reward loss at 𝑅 = 2, the highest score 
is still achieved. This demonstrates that multi-pruning analysis, a feature of the pruning agents, is capable of providing additional 
insights to avoid local optima without incurring significant performance degradation, or in some cases achieving superior returns.

4.3. Assessing final performance

After obtaining multiple pruning policies, we verify whether there exists a policy factor within the probability distribution of 
multiple policies that enhances the final performance. Therefore, we neither adopt any gradient-based optimization method nor 
introduce additional state information. Instead, we sample data from the given state distribution and then sort and reorganize it 
to arrive at the final policy output. The iterative pruning actions, carried out by four distinct pruning agents, are designated as 
𝐼 = {1, 2, 3, 4}. Each pruning agent is trained individually using a multi-process asynchronous technique. Additionally, the training 
11

repetition parameter for the sub-actors denoted as 𝐺, is set to 5.

https://github.com/tinyzqh/MSPP
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Fig. 4. The comparison of the training performance of different agent designs, including MSPP with its multi-pruning agents, and benchmarks such as Dreamer and 
PlaNet. The comparison is made across several episodes, with performance metrics plotted at each environment step to demonstrate the effectiveness and efficiency 
of the different approaches in learning and decision-making within specified environments.

Fig. 4 illustrates the training process of the Dreamer, PlaNet, and MSPP models, where they achieve episode returns after the 
same number of environment steps. Notably, the MSPP model outperforms the others on three randomly selected tasks, showcasing its 
superior performance. This result highlights the effectiveness of our MSPP model when multi-pruning agents are optimally configured 
in training scenarios.

It demonstrates that diverse pruning strategies can provide different perspectives on the same world model, and some of these 
perspectives can significantly improve the performance of the final task. Two points worth mentioning: (1) The quantity of pruning 
agents does not exhibit a direct positive correlation with the ultimate performance. This is attributed to interference caused by 
excessive noise within the distribution. (2) The training repetition hyperparameter 𝐺 exhibits minimal influence on the ultimate 
performance, suggesting that the key to enhancing performance lies in the strategic deployment of pruning policies rather than the 
repetition frequency of training.

5. Conclusions and future work

This paper introduces a novel approach to understanding world models MSPP. We provide a theoretical analysis of this algorithm 
in tabular form, demonstrating that it can converge from any given initial policy to the optimal policy within a subspace. Subsequently, 
we extend this approach to neural network approximation methods and present the updated theorem of the MSPP. Finally, through 
experiments conducted under the same world model, we verify that the MSPP can identify multiple policy factors that enhance 
performance. Although this article focuses on model-based reinforcement learning algorithms, the concept can be extended to any 
two-stage optimization method, such as MPC. The optimization in the first stage can take a diversity-oriented approach, while the 
second stage can involve integration.
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Appendix A. Proof of MSPP gradient theorem

Theorem 2 proposes that for any given MDP that has a discount reward structure, the gradient of the value function 𝑉 𝜋𝑖
𝜙𝑖 with 

respect to the policy parameters can be calculated using the expected value of the gradient of the action-value function 𝑄𝜋𝑖
𝜙𝑖 under 

the state and action distributions at multiple steps, expressed in Eq. (A.1).

∇𝜙𝑖
𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)
= 𝔼𝑠𝜏∼𝜇𝑟𝑖,𝑎𝜏∼𝜋𝑖𝜙𝑖

[
𝑄
𝜋𝑖
𝜙𝑖 (𝑠𝑟, 𝑎𝑟)∇𝜙𝑖

ln𝜋𝑖
𝜙𝑖

(
𝑎𝑟 ∣ 𝑠𝑟
)]
. (A.1)

The notion ∇𝜙𝑖
𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)

represents the gradient of the value function 𝑉 𝜋𝑖
𝜙 for state 𝑠𝜏 , with respect to the 𝑖 step pruning policy 

parameters 𝜙𝑖. where 𝑠𝑟, 𝑎𝑟 is state, action space of sub multi-pruning. 𝑠 ∼ 𝑢𝑟𝑖 represents sub space pruning state distribution. The 
policy 𝜋𝑖 determines the probability of taking an action given a state and its parameters. The term 𝔼𝑠∼𝜇𝑟𝑖 ,𝑎𝜏∼𝜋𝑖𝜙𝑖

represents the expected 

value over the states and actions sampled from the multi-pruning state distribution 𝜇𝑟𝑖 and the policy 𝜋𝑖
𝜙𝑖

.

Proof of Theorem 2. The proof begins by defining how actions are chosen in a multi-pruning context. At each time step 𝑡, the 
imagined action of latent env model 𝑎𝜏∶𝜏+𝐻 follows the policy 𝜋𝑖

𝜙𝑖

(
𝑎𝜏∶𝜏+𝐻 |𝑠𝜏∶𝜏+𝐻) from Eq. (A.2).

𝜋𝑖
𝜙𝑖

(
𝑎𝜏∶𝜏+𝐻 |𝑠𝜏∶𝜏+𝐻) ={𝑎𝜏 ∼ 𝑞𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)

𝑖 ∣
(
(𝜏 − 𝑡) ∕𝑡𝑠

)
𝑎𝜏 = 𝑎𝜏−1 otherwise,

(A.2)

where 𝑖 is repeat times. The policy 𝜋𝑖
𝜙𝑖

at a future time 𝜏 +𝐻 given the current time 𝜏 and state 𝑠𝜏 is defined in Eq. (A.2). Here, 𝑎𝜏
denotes the action at the resolution of the imagination trajectory.

The action-value function 𝑄𝜋𝑖
𝜙𝑖 is then expended recursively in terms of rewards and future action-value functions, which includes 

terms for immediate reward 𝑟, the action-value function at the next step 𝑄𝜋𝑖
𝜙𝑖
(
𝑠𝜏+1, 𝑎𝜏

)
(here suppose the action at time step 𝜏 + 1

choose the action of last time step 𝜏), and subsequent action-value functions. At the repeat time step, the state-action is determined 
as the action is the same as last time step. For given 𝑠𝜏 and 𝑎𝜏 , under pruning policy 𝜋𝑖, we obtain Eq. (A.3).

𝑄
𝜋𝑖
𝜙𝑖 (𝑠𝜏 , 𝑎𝜏 ) = 𝑟𝑠𝜏 ,𝑎𝜏 + 𝛾

∑
𝑠𝜏+1


(
𝑠𝜏+1 ∣ 𝑠𝜏 , 𝑎𝜏

)
𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+1, 𝑎𝜏

)
= 𝑟𝑠𝜏 ,𝑎𝜏 + 𝛾

∑
𝑠𝜏+1


(
𝑠𝜏+1 ∣ 𝑠𝜏 , 𝑎𝜏

)(
𝑟𝑠𝜏+1 ,𝑎𝜏 + 𝛾

∑
𝑠𝜏+2


(
𝑠𝜏+2 ∣ 𝑠𝜏+1, 𝑎𝜏

)
𝑄
𝜋𝑖
𝜙𝑖 (𝑠𝜏+2, 𝑎𝜏 )

)
= 𝑟𝑠𝜏 ,𝑎𝜏 + 𝛾

∑
𝑠𝜏+1


(
𝑠𝜏+1 ∣ 𝑠𝜏 , 𝑎𝜏

)
𝑟𝑠𝜏+1 ,𝑎𝜏

+ 𝛾2
∑
𝑠𝜏+1


(
𝑠𝜏+1 ∣ 𝑠𝜏 , 𝑎𝜏

)∑
𝑠𝜏+2


(
𝑠𝜏+2 ∣ 𝑠𝜏+1, 𝑎𝜏

)
𝑄
𝜋𝑖
𝜙𝑖 (𝑠𝜏+2, 𝑎𝜏 )

= 𝑟𝑠𝜏 ,𝑎𝜏 +
𝑖−3∑
𝑧=0

𝛾𝑧+1
𝑖−3∏
𝑧=0

∑
𝑠𝜏+𝑧+1


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
𝑟𝑠𝜏+𝑧+1 ,𝑎𝜏

+ 𝛾𝑖−1
𝑖−2∏
𝑧=0

∑
𝑠𝜏+𝑧+1

(𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏 )𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖−1, 𝑎𝜏

)
, (A.3)

where 𝑖 ≥ 1. The derivation of the state-action value function, denoted as ∇𝜙𝑖𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏 , 𝑎𝜏
)
, results in Eq. (A.4).

∇𝜙𝑖
𝑄
𝜋𝑖
𝜙
(
𝑠𝜏 , 𝑎𝜏
)
= 𝛾𝑖−1

𝑖−2∏
𝑧=0

∑
𝑠𝜏+𝑧+1


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
∇𝜙𝑖

𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖−1, 𝑎𝜏

)
= 𝛾𝑖−1

𝑖−2∏
𝑧=0

∑
𝑠𝜏+𝑧+1


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
∇𝜙𝑖

(∑
𝑠𝜏+𝑖,𝑟


(
𝑠𝜏+𝑖 ∣ 𝑠𝜏+𝑖−1, 𝑎𝜏

)(
𝑟𝑠𝜏+𝑖−1 ,𝑎𝜏 + 𝛾𝑉

𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖
)))

= 𝛾𝑖
𝑖−1∏ ∑


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
∇𝜙𝑖

𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖
)
. (A.4)
13

𝑧=0 𝑠𝜏+𝑧+1
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The objective of sub-space multi-pruning agents is to maximize the excepted reward of the state value at planning step 𝜏 , as delineated 
in Eq. (A.5).

∇𝜙𝑖
𝑉
𝜋𝑖
𝜙
(
𝑠𝜏
)

(A.5)

=∇𝜙𝑖

( ∑
𝑎𝜏∈𝐴𝑟

𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏 , 𝑎𝜏
)
𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
))

=
∑
𝑎𝜏∈𝐴𝑟

(
𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏 , 𝑎𝜏
)
∇𝜙𝑖

𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
+ 𝜋𝑖

𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
∇𝜙𝑖

𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏 , 𝑎𝜏
))

=
∑
𝑎𝜏∈𝐴𝑟

𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏 , 𝑎𝜏
)
∇𝜙𝑖

𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)

+
∑
𝑎𝜏∈𝐴𝑟

𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
𝛾𝑖

𝑖−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
∇𝜙𝑖

𝑉
𝜋𝑖
𝜙
(
𝑠𝜏+𝑖
)
,

where 𝑧 represents the repeat action time step. Define the function 𝜉
(
𝑠𝜏
)
=
∑
𝑎𝜏∈𝐴𝑟 𝑄

𝜋𝑖
𝜙𝑖
(
𝑠𝜏 , 𝑎𝜏
)
∇𝜙𝑖

𝜋𝑖
𝜙𝑖
(𝑎𝜏 ∣ 𝑠𝜏 ), therefore, we derive 

Eq. (A.6).

∇𝜙𝑖
𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)
=𝜉(𝑠𝜏 ) +

∑
𝑎𝜏∈𝐴𝑟

𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
)
𝛾𝑖

𝑖−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
∇𝜙𝑖

𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖
)

=𝜉(𝑠𝜏 ) + 𝛾𝑖
𝑖−1∏
𝑧=0

∑
𝑎𝜏∈𝐴

𝜋𝑖
𝜙𝑖

(
𝑎𝜏 ∣ 𝑠𝜏
) ∑
𝑠𝜏+𝑧+1


(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑎𝜏

)
∇𝜙𝑖

𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖
)

=𝜉(𝑠𝜏 ) + 𝛾𝑖
𝑖−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧

)
∇𝜙𝑖

𝑉
𝜋𝑖
𝜙
(
𝑠𝜏+𝑖
)
. (A.6)

As illustrated in Eq. (A.6), the derivative of state value at time step 𝜏 can be recursively derived from the next decision time step 
𝜏 + 𝑖. Furthermore, we define the 𝑘 times discount state transition probability 𝛾𝑖∗𝑘

∏𝑖∗𝑘−1
𝑧=0
∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑘

)
as described 

in Eq. (A.7).

𝛾𝑖∗𝑘
𝑖∗𝑘−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑘

)
(A.7)

∶= 𝛾𝑖∗(𝑘−1)
𝑖∗(𝑘−1)−1∏

𝑧=0

∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑘− 1

)
𝛾𝑖

𝑖∗𝑘−1∏
𝑧=𝑖∗(𝑘−1)

∑
𝑠𝜏+𝑧


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧

)
.

According to Eqs. (A.6) and (A.7):

∇𝜙𝑖
𝑉
𝜋𝑖
𝜙
(
𝑠𝜏
)

(A.8)

= 𝜉(𝑠𝜏 ) + 𝛾𝑖
𝑖−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧

)
∇𝜙𝑖

𝑖
𝑉
𝜋𝑖
𝜙
(
𝑠𝜏+𝑖
)

= 𝜉(𝑠𝜏 ) + 𝛾𝑖
𝑖−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧,1

)
𝜉(𝑠𝜏+𝑖)

+ 𝛾𝑖∗2
𝑖∗2−1∏
𝑧=0

∑
𝑠𝜏+𝑧


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧,2

)
∇𝜃𝑉

𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖∗2
)

=
∑
𝑠∈𝑆𝑟

∞∑
𝑘=0

𝛾𝑘∗𝑖
𝑖∗𝑘−1∏
𝑧=0

∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑘

)
𝜉 (𝑠)

=
∑
𝑠∈𝑆𝑟

𝑑
𝜋𝑖
𝜙𝑖
𝑟 (𝑠)

∑
𝑎𝜏+𝑖∗𝑘∈𝐴𝑟

𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑖∗𝑘, 𝑎𝜏+𝑖∗𝑘

)
∇𝜙𝑖

𝜋𝑖
𝜙𝑖
(𝑎𝜏+𝑖∗𝑘 ∣ 𝑠𝜏+𝑖∗𝑘).

The term 𝑑
𝜋𝑖
𝜙𝑖
𝑟 (𝑠) =

∑∞
𝑘=0 𝛾

𝑘∗𝑖∏𝑖∗𝑘−1
𝑧=0
∑
𝑠𝜏+𝑧+1


𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑘

)
denotes a multi-pruning transition probability function, which 

is used to describe the likelihood of transitioning from one state to another at different scales of the MDP. This distribution is 
14

characterized by summing over all possible states, indexed by 𝑘, and within each state, considering the product of the probabilities 
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Fig. B.5. An example of model-bias causing local optimality.

Fig. C.6. Space Mapping from environment model to world model.

of transitioning from one state to the next, as dictated by the policy 𝜋𝑖
𝜙𝑖

. Each transition probability 𝜋𝑖
𝜙𝑖
(
𝑠𝜏+𝑧+1 ∣ 𝑠𝜏+𝑧, 𝑘

)
represents 

the likelihood of moving to state 𝑠𝜏+𝑧+1 from state 𝑠𝜏+𝑧 repeated 𝑖 times, given the step 𝑘 in the process. We define 𝑎𝑟 = 𝑎𝜏+𝑖∗𝑘 ∈𝐴𝑟, 
𝑠𝑟 = 𝑠𝜏+𝑖∗𝑘 ∈ 𝑆𝑟. Therefore,

∇𝜙𝑖
𝑉
𝜋𝑖
𝜙𝑖
(
𝑠𝜏
)
=
∑
𝑠𝑟∈𝑆𝑟

𝑑
𝜋𝑖
𝜙𝑖
𝑟 (𝑠)

∑
𝑎𝑟∈𝐴𝑟

𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝑟, 𝑎𝑟
)
∇𝜙𝑖

𝑖
𝜋𝑖
𝜙𝑖
(𝑎𝑟 ∣ 𝑠𝑟)

∝
∑
𝑠𝑟∈𝑆𝑟

𝜇𝑟𝑖 (𝑠)
∑
𝑎𝑟∈𝐴𝑟

(
𝜋𝑖
𝜙𝑖

(
𝑎𝑟, 𝑠𝑟
)
𝑄
𝜋𝑖
𝜙𝑖
(
𝑠𝑟, 𝑎𝑟
) ∇𝜙𝑖

𝜋𝑖
𝜙𝑖

(
𝑎𝑟 ∣ 𝑠𝑟
)

𝜋𝑖
𝜙𝑖

(
𝑎𝑟 ∣ 𝑠𝑟
) )

=𝔼𝑠𝑟∼𝜇𝑟𝑖,𝑎𝑟∼𝜋𝑖𝜙𝑖

[
𝑄
𝜋𝑖
𝜙𝑖 (𝑠𝑟, 𝑎𝑟)∇𝜙𝑖

ln𝜋𝑖
𝜙𝑖

(
𝑎𝑟 ∣ 𝑠𝑟
)]
. (A.9)

It is noteworthy that the gradient exists solely at decision nodes, effectively resulting in a leapfrogging derivative calculation. □

Appendix B. An example of local optima caused by model bias

Here, we provide an example illustrating how a policy can become trapped in a local optimum due to approximation errors in the 
world model within model-based reinforcement learning algorithms.

Assuming that the function 𝑓𝑒 represents the real environment, it can be observed that 𝑓𝑒 is a smooth convex function in Fig. B.5. 
This makes it relatively easy to find the optimal solution, which is the position of the small black ball at the bottom, when using 
optimization methods. However, in model-based reinforcement learning, a world model is approximated in order to reduce interac-

tions with the environment. The expectation is that the policy will interact with the world model to find the optimal policy, thus 
avoiding expensive interactions with the real environment As the world model is approximated from the real environment, there will 
inevitably be approximation errors. The function learned from the world model is denoted as 𝑓𝑤 . However, due to the presence of 
these approximation errors, 𝑓𝑤 has many local optima, making it easy for the policy to become trapped in them and resulting in 
suboptimal outcomes.

Appendix C. An example to explain MSPP

Here, we present an example of a visual explanation of MSPP in model-based reinforcement learning. Let us consider the real 
environment space as Ω1. In model-based reinforcement learning, the problem is translated from Ω1 to Ω2 due to the high cost of 
collecting samples in Ω1. This is often the case with real equipment, which has a limited lifespan. MSPP further divides the space Ω2
based on the number of repetitions of actions. Specifically, Ω2 is split into three subspaces: Ω1

2, Ω2
2, and Ω3

2, as illustrated in Fig. C.6.

Each pruning policy involves searching and optimizing within divided spaces in order to obtain the optimal policy. However, it 
15

appears that searching in Ω2
2 and Ω3

2 may have a negative impact on global convergence when compared to searching within the 
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Fig. D.7. The comparison of system framework.

larger space of Ω1
2. The optimal policy found in Ω1

2 is likely to be better than those found in Ω2
2 and Ω3

2. For this issue, we offer the 
following explanations.

1. Ω1
2 is a high-dimensional space, and thus, neural networks are necessary to effectively handle this problem. However, the opti-

mization of neural networks is often hindered by the learning rate, which can easily become trapped in local optima. As a result, 
when using a fixed learning rate and other hyperparameters, it is not guaranteed that the global optimum can be reached in the 
Ω1
2 space through neural network approximations.

2. There may be multiple optimal solutions in the Ω1
2 space for different tasks. For instance, in Fig. C.6, the red dots represent 

three optimal solutions. In such cases, it is easier to find the optimal solution in a smaller space, such as Ω3
2 , due to the reduced 

search space. We also provided an example of autonomous driving in the introduction of our paper to illustrate the benefits of 
this pruning strategy. In the “4.2. Analyzing Multi-Step Pruning Agents” section of our experimental paper, we observed that 
different pruning policies with varying repetition times have their own unique insights and advantages in finding the optimal 
solution for different tasks.

3. Even if Explanation 1 and Explanation 2 do not apply to a specific task, indicating the presence of a global optimum in the Ω1
2

space rather than the Ω2
2 and Ω3

2 spaces, the neural network optimization may still discover this optimal solution. In such cases, 
this optimal policy will be selected as a top-ranking solution in the subsequent cross-entropy method. Thus, while the pruning 
policy may have minimal impact on overall convergence for Ω1

2 space, it offers numerous benefits.

Appendix D. System framework comparison

Here, we will explain the comparison of system frameworks.

In model-based reinforcement learning, it is common to use multiple neural network models to approximate a world model, or 
to learn multiple world models for different settings [45,46], or to reduce the impact of the world model and the real environment 
model on the final policy or value function [47]. These approaches are illustrated in Fig. D.7 (a), (b), and (c), respectively. However, 
we propose a new perspective on this problem: is it necessary to be concerned about minor model bias? Even if a world model has 
some bias, we can still examine it from multiple policy perspectives, in the hopes that the policy can truly understand the model and 
derive a better strategy.
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