Response to the Editors and Reviewers

Paper ID: MM-025164.R1

Paper Title: Plasticity-Aware Mixture of Experts for Learning Under QoE Shifts in Adaptive Video Streaming

Dear Editors and Reviewers:

We sincerely appreciate the opportunity to respond to your comments and those of reviewers, and to improve the
quality of our manuscript. We are submitting a revised version of our manuscript and would like to thank you and the
reviewers for your constructive comments.

In response to your and the reviewers’ feedback, we have carefully revised the manuscript, incorporating all neces-
sary amendments, which are indicated in blue throughout the document. We have also provided detailed explanations
for each comment in the following sections of this response letter. We hope that these revisions and our responses can
address your comments and those of the reviewers.

Thank you very much once again for your invaluable comments, which have helped improve our research.

Yours sincerely,

Zhiqiang He and Zhi Liu.



1. Response to the comments from Associate Editor

e Comment 1: Based on the enclosed set of reviews (**See note below about attachments), I have decided that
the manuscript be ACCEPTED FOR PUBLICATION WITH MANDATORY MINOR REVISIONS INCLUDING
ENGLISH USAGE (AQE). There is only one minor point that Reviewer 3 would like you to address. After that, the

paper is ready for publication.

Response:

We are grateful for the time and attention you devoted to our work. Regarding Reviewer 3’s concerns about the
statistical methods and the differences in effect across pairwise comparisons in the subfigures of Figs. 8 and 9, we
have explained how the metric data were obtained and how the calculations were performed. We provide explana-
tions from four perspectives: the metric definition, the metric computation method, the tabulated numerical
comparisons, and the open-source code link.

Specifically, we have added the following content (in blue text):
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Figure 1: Comparing PA-MOE with recent ABR algorithms over the Train set.
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Figure 2: Comparing PA-MOE with recent ABR algorithms over the Test set.

In this subsection, we compare our approach with methods that rely on prior knowledge, including learning-based
approaches such as Pensieve [1] and the meta-learning method Merina [2], as well as non-learning-based approaches
such as RobustMPC, RateBased, and BufferBased [3]. To ensure a fair and credible comparison, we use the same
QoE-component coefficients and the same network architecture as in Merina [4] for each expert in the MoE. Similar
to Pensieve [1] and the meta-learning method Merina [2], we use the final trained model for performance evaluation.
The network bandwidth is randomly sampled from either the training traces or the test traces, and each video download

constitutes one episode.



For each algorithm, we run 300 episodes under identical settings and compute the average QoE for each episode;
these per-episode averages are then used for comparing QoE performance across algorithms. The cumulative distribu-
tion functions (CDFs) plot the empirical cumulative distribution of QoE values across the 300 episodes. We aggregate
the per-episode QoE values, compute a histogram using 500 equally spaced bins over the QoE range, take the cumu-
lative sum of bin counts, and normalize by the total number of episodes to obtain the empirical CDF. Thus, at any
position on the horizontal axis, the curve reports the fraction of sessions whose metric value is less than or equal to
the corresponding horizontal value. No additional smoothing or parametric assumptions are used; the curves directly
reflect the empirical distribution of the metric for each scheme. We perform pairwise comparisons of the QoE compo-
nents—Bitrate Reward, Stall Time, and Smoothness—and compute the sample means together with 95% confidence

intervals based on the Student’s ¢-distribution.

Table 1: QoE and its components for different ABR algorithms on test dataset (mean over episodes).

Algorithm Mean QoE 1T Bitrate (Mbps) T Rebuffer Time (s) | Smoothness (Mbps) |

Rule-based methods

Buffer Based 0.623 1.011 £0.053 0.002 + 0.002 0.378 £0.015
Rate Based 0.470 1.143 £ 0.060 0.081 £ 0.011 0.324 £ 0.014
Robust MPC 0.748 1.113 £ 0.059 0.046 = 0.010 0.167 = 0.008
Learning-based methods

Pensieve 0.866 1.044 £ 0.060 0.012 £ 0.007 0.126 = 0.006
Merina 0.869 1.080 + 0.055 0.016 + 0.007 0.142 + 0.084
PA-MoE 0.914 1.063 £+ 0.051 0.009 + 0.005 0.109 + 0.004

Note: 7 indicates larger is better; | indicates smaller is better. Bitrate, Rebuffer Time, and Smoothness are reported as mean £ 95% Confidence

Interval (CI); Mean QOoE is reported as mean only.

Figure 1 presents the CDFs of average QoE for all sessions and algorithms on the training set, along with pairwise
comparisons of the QoE components—bitrate, smoothness, and stall time. Figure 2 shows the corresponding results
on the testing set. Table 1 reports the QoE and its components achieved by different ABR algorithms on the test set.
As shown, our proposed PA-MoE achieves state-of-the-art performance, even relative to the meta-learning method
Merina, which leverages prior knowledge. These results underscore the substantial potential of optimizing adaptive

bitrate (ABR) algorithms through the lens of plasticity.



2. Response to Reviewer 3

2.1. Comments

The authors have addressed most of my concerns effectively. The only remaining point is to clarify the statistical

methods and effect differences for the pairwise comparisons in the subfigures of Fig. 8 and 9.

Response:

Thank you for your positive feedback. We sincerely appreciate your patience in carefully reading our manuscript
and for providing valuable suggestions.

Regarding the statistical methods you mentioned, we have added a detailed description of the metric def-
inition and the metric computation procedure. To better characterize the performance gaps in our pairwise
comparisons, we have also added a table reporting the exact results on the test set. Finally, we will release the
source code, which includes the full implementation details.

We first introduce how the QoE metric is computed.

1. Episode definition: In our setup, each episode corresponds to downloading a single video.

2. Collection of QoE data: For learning-based methods, to ensure a fair comparison with prior work, we follow
Pensieve [1] and the meta-learning method Merina [2] by using the converged model for forward inference to
obtain the inferred QoE value for each episode.

3. QoE computation for plotting: The same video is simulated and transmitted 300 times under different network
bandwidth conditions (bandwidth traces). After each transmission, we compute an average QoE for that episode,

and these per-episode average QoE values are used for subsequent plotting.

When the simulations are conducted on the training bandwidth traces, the corresponding figure is Figure 3. Com-
paring PA-MOE with recent ABR algorithms over the Train set. When the simulations are conducted on the
testing bandwidth traces, the corresponding figure is Figure 4. Comparing PA-MOE with recent ABR algorithms
over the Test set.

We then explain how the figures are generated.

CDF Plot Generation: From the 300 simulation runs, we obtain 300 average QoE values. Since these QoE values
vary across runs, we construct an empirical distribution by taking the QoE range (from the minimum to the maximum)
and dividing it into 500 equal-width intervals. We then build a probability histogram by counting how many QoE
values fall into each interval, which yields the empirical distribution of QoE. Based on this distribution, we compute
and plot the empirical cumulative distribution function (CDF).

Plot Pairwise Comparisons: In addition, using the same set of 300 per-episode average QoE values, we perform
pairwise comparisons among the QoE component metrics and compute confidence intervals, producing three subplots:
Video Bitrate (Mbps) vs. Time Spent on Stall (s), Video Bitrate (Mbps) vs. Bitrate Smoothness (Mbps), and Bitrate
Smoothness (Mbps) vs. Time Spent on Stall (s).

Effect differences for the pairwise comparisons: We added Table 2 to present the exact numerical values from

the pairwise comparisons, which more accurately reflect the performance differences.



Specific source-code implementation: More detailed information can be found in the code, and we have included
the code link in the Abstract section. The code is available at https://github.com/tinyzgh/PA-MoE. The code will be
released publicly once it has been properly organized and finalized.

Specifically, we have added the following content (highlighted in blue):

In this subsection, we compare our approach with methods that rely on prior knowledge, including learning-based
approaches such as Pensieve [1] and the meta-learning method Merina [2], as well as non-learning-based approaches
such as RobustMPC, RateBased, and BufferBased [3]. To ensure a fair and credible comparison, we use the same
QoE-component coefficients and the same network architecture as in Merina [4] for each expert in the MoE. Similar
to Pensieve [1] and the meta-learning method Merina [2], we use the final trained model for performance evaluation.
The network bandwidth is randomly sampled from either the training traces or the test traces, and each video download

constitutes one episode.

_ "] - - Bufferbased =2 %

[ —  Rate-based Ry 12 12 So1

— —_————

goe RobustMPC 4 - N - »{» E .

o Pensieve 7y E” ‘ — E” g 02

208 Merina 7y 1.0 81,0 c 0
% /4 L1 L1 £

> | —-- PAMoE Wi £ g g

Lo : @09 @09 2

] PN 4 o o £03

a 7 2 2 (7]
s - | f Los Sos o .

a = Tl > ~@- Buffer-based  ~%- RobustMPC 8- Merina > ~@- Bufferbased  ~%- RobustMPC 8- Merina o -@- Bufferbased %~ RobustMPC  -#+ Merina
v T 0.7 Rate-based Pensieve PAMOE 0.7 Rate-based Pensieve PAMOE 204 Rate-based Pensieve PAMOE
0.0
T T T o 035 030 025 020 015 010 035 030 025 020 015 0.10 035 030 025 020 015 010
: Av'e,age Values of Chunk's QoE Time Spent on Stall (s) Bitrate Smoothness (mbps) Time Spent on Stall (s)

Figure 3: Comparing PA-MOE with recent ABR algorithms over the Train set.
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Figure 4: Comparing PA-MOE with recent ABR algorithms over the Test set.

For each algorithm, we run 300 episodes under identical settings and compute the average QoE for each episode;
these per-episode averages are then used for comparing QoE performance across algorithms. The cumulative distribu-
tion functions (CDFs) plot the empirical cumulative distribution of QoE values across the 300 episodes. We aggregate
the per-episode QoE values, compute a histogram using 500 equally spaced bins over the QoE range, take the cumu-
lative sum of bin counts, and normalize by the total number of episodes to obtain the empirical CDF. Thus, at any
position on the horizontal axis, the curve reports the fraction of sessions whose metric value is less than or equal to
the corresponding horizontal value. No additional smoothing or parametric assumptions are used; the curves directly
reflect the empirical distribution of the metric for each scheme. We perform pairwise comparisons of the QoE compo-
nents—Bitrate Reward, Stall Time, and Smoothness—and compute the sample means together with 95% confidence

intervals based on the Student’s ¢-distribution.



Table 2: QoE and its components for different ABR algorithms on test dataset (mean over episodes).

Algorithm

Mean QoE 1T Bitrate (Mbps) 1 Rebuffer Time (s) | Smoothness (Mbps) |

Rule-based methods

Buffer Based 0.623 1.011 4+ 0.053 0.002 £ 0.002 0.378 £0.015
Rate Based 0.470 1.143 4+ 0.060 0.081 £0.011 0.324 £0.014
Robust MPC 0.748 1.113 £ 0.059 0.046 £+ 0.010 0.167 £ 0.008
Learning-based methods

Pensieve 0.866 1.044 + 0.060 0.012 £+ 0.007 0.126 £ 0.006
Merina 0.869 1.080 = 0.055 0.016 £ 0.007 0.142 £ 0.084
PA-MoE 0.914 1.063 + 0.051 0.009 £ 0.005 0.109 £ 0.004

Note: 7 indicates larger is better; | indicates smaller is better. Bitrate, Rebuffer Time, and Smoothness are reported as mean £ 95% Confidence

Interval (CI); Mean QoE is reported as mean only.

Figure 3 presents the CDFs of average QoE for all sessions and algorithms on the training set, along with pairwise
comparisons of the QoE components—bitrate, smoothness, and stall time. Figure 4 shows the corresponding results
on the testing set. Table 2 reports the QoE and its components achieved by different ABR algorithms on the test set.
As shown, our proposed PA-MoE achieves state-of-the-art performance, even relative to the meta-learning method
Merina, which leverages prior knowledge. These results underscore the substantial potential of optimizing adaptive
bitrate (ABR) algorithms through the lens of plasticity.

In closing, we sincerely appreciate your careful evaluation and valuable feedback. Your comments have

been instrumental in improving the clarity and overall quality of our paper.
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