
Response to the Editors and Reviewers

Paper ID: MM-025164

Paper Title: Plasticity-Aware Mixture of Experts for Learning Under QoE Shifts in Adaptive Video Streaming

Dear Editors and Reviewers:

We sincerely appreciate the opportunity to respond to your and the reviewers’ comments and improve the quality

of our manuscript. We are submitting the revised version of our manuscript and want to express our gratitude for the

constructive comments provided by you and the reviewers.

In response to your and the reviewers’ feedback, we have carefully revised the manuscript, incorporating all neces-

sary amendments, which are indicated in blue throughout the document. We have also provided detailed explanations

for each comment in the following part of this reply letter. We hope that these revisions and our responses can address

your comments and those of the reviewers.

Thank you very much once again for your invaluable comments to improve our research.

Yours sincerely,

Zhiqiang He and Zhi Liu.
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1. Response to the comments from Associate Editor

• Comment 1: The reviewers have a number of significant concerns about the paper. Some are in terms of pre-

sentation, i.e., that the framework and algorithm should be presented more formally to the experiments, where the

reviewers find that comparisons should be made to other, learning-based approaches.

Response: Thank you very much for your valuable feedback. We sincerely appreciate your constructive suggestions

regarding both the presentation and the experimental comparisons.

1. Regarding the presentation of the framework and algorithm

1) We have moved the experimental setup from the appendix to the main text.

2) We now provide a formal description of the algorithm, including detailed pseudocode.

3) We have added clear explanations of the algorithm’s inputs and outputs.

The narrative structure and experimental logic of our paper are as follows:

Framework for Algorithms: We address the QoE Shift problem in adaptive bitrate streaming (ABR). Unlike

prior methods that rely on handcrafted priors, we analyze a model’s internal states to study network plasticity, thereby

removing the need for prior assumptions. We first empirically verify that MLP-based controllers in ABR exhibit

plasticity loss (Fig. 1: Action Response to System Change in the revised manuscript). Building on this diagnosis, we

propose PA-MoE—a Plasticity-Aware Mixture-of-Experts—which intuitively leverages multiple specialized experts

to handle different regimes. To our knowledge, this is the first approach in ABR that tackles QoE Shift explicitly from

the perspective of plasticity. Accordingly, we devote more space to demonstrating and quantifying plasticity loss, and

we intentionally adopt a simple mitigation to underscore the substantial headroom available when optimizing ABR

through this lens.

Experiments: In our experiments, we explain why PA-MoE alleviates plasticity loss, detail how experts are se-

lected internally, characterize the ABR system’s response dynamics, and decompose overall QoE gains by component.

Analyses at both the algorithmic and system levels highlight the large, untapped opportunity for plasticity-oriented

ABR design. To assess the algorithm’s robustness and efficacy, we also conduct sensitivity analyses with respect to

the learning rate and noise intensity. We also present comparisons with both learning-based and non-learning-based

methods.

Modified:

1) In Section V-A Experiment Setting, we add the content:

The experiments were performed on a system equipped with an Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz,

without GPU acceleration. The set of available bitrates is defined as A = {300, 750, 1200, 1850, 2850, 4300} kbps.

Each video segment has a duration of 4 seconds. The playback buffer can hold up to 60 seconds of content, and the

video consists of 49 segments in total. PPO hyperparameters are detailed in Table 2. For each training run, the agent

is trained for approximately two hours, with a total of 2 million timesteps and 1000 iterations. All hyperparameters,

including random seeds, are kept consistent across different algorithms. All QoE shift patterns in this paper follow the

format shown in Figure 1.
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Table 1: Potential Hyperparameter Configurations For PPO.

Hyperparameter Value

Learning Rate 1e-4

Batch size 2000

Minibatch Size 62

Number of Iteration 1000

Rollout steps per iteration 2000

Total Timesteps 2e6

Update Epochs 5

GAE-γ 0.99

GAE-λ 0.95

Clip ϵ 0.2

Entropy Coefficient 0

Value Function Coefficient 5

Activation ReLu

Environment {D, L, N}

# Experts 3

Expert Hidden Size 18

MoE {MoE, SMoE, PA-MoE}

Router {Top-K-Router, Softmax-Router}

Number of Selected Experts 1

Actor MoE True

Critic MoE True

Network Trace Datasets: In our experiments, we draw on three distinct sources of throughput traces: (i) record-

ings from HSDPA-based 3G networks [1], collected while smartphones streamed video during travel on subways,

trams, trains, buses, and ferries; (ii) the FCC corpus [2], created by stitching together randomly sampled logs from

the “Web browsing” class in the August 2016 public release; and (iii) the Puffer open dataset [3], which comprises

on-demand video sessions observed over heterogeneous access technologies, including wired links, Wi-Fi, and cellular

networks (3G/4G/5G). The training set contains 127 traces and the test set contains 142; there is no overlap between

them. These datasets will be released together with the source code upon publication.

2) In Section Appendix F: Algorithm Pseudocode, we add the content:

To facilitate implementation, Algorithm 1 provides complete pseudocode with explicit definitions of routing and

plasticity-aware noise update rules.
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Algorithm 1: PPO with Plasticity Aware MoE
Input: Env env; policy params πω (router + actor experts); value params Vω (router + critic experts); rollout

length T ; update epochs K.

Output: Optimized policy ω

1 for iteration = 1, 2, . . . do

2 Reset trajectory buffer; B ← ∅

3 for t = 1, . . . , T do

4 Observe state st;

5 Compute router features hπω
t ← fπω

router(st);

6 Compute clean logits uπω ←Wπω

topkh
πω
t ;

7 Add router noise scale zπω ;

8 n⋆ ← argmaxj
(
uπω
j + zπω

j

)
; # Top-1 expert index

9 eπω
t ← Expertπω

n⋆ (st) ; # selected actor expert

10 ℓt ←Wpolicye
πω
t ; # action logits

11 Sample at ∼ Categorical(logits = ℓt) and save log πω(at|st);

12 Compute value hVω
t , uVω , zVω analogously;

13 m⋆ ← argmaxj
(
uVω
j + zVω

j

)
;

14 eVω
t ← ExpertVω

m⋆(st);

15 vt ←Wvaluee
Vω
t ;

16 Step env with at to get rt, st+1, dt+1;

17 Push (st, at, rt, dt+1, log πθ(at|st), Vt) into B;

18 if dt+1 then

19 reset env and continue

20 Compute advantages At and returns Rt from B;

21 for epoch = 1, . . . ,K do

22 for each minibatch B ⊂ B do

23 Update w using noise injection by Eq. (11) in the revised manuscript;

24 (optional) Save checkpoints periodically;
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3) In Section II-A Problem Formulation, we add the content:

The state and action spaces are aligned with mainstream approaches such as Pensieve [4]. The environment follows

a standard reinforcement learning formulation: the agent interacts with the streaming system by observing network and

playback states and selecting bitrate actions accordingly. The input is the state st ∈ R6×8, comprising six categories

of information, each tracked over the most recent eight time steps: (i) normalized last selected bitrate; (ii) normalized

buffer occupancy; (iii) measured throughput (downloaded size per unit time); (iv) normalized delay; (v) sizes of the

next video chunk for all bitrate levels; and (vi) remaining number of chunks until the end of the video. PA-MoE

outputs a discrete bitrate action at ∈ {0, 1, 2, 3, 4, 5}, where each value corresponds to one of the six available bitrate

levels in the streaming system.

2. Concerning the comparative experiments

We have expanded the evaluation to include comparisons with both non-learning-based approaches (Buffer-Based

[5], Rate-Based [6], and RobustMPC [7]) and learning-based approaches (Pensieve [4] and Merina [2], a meta-learning

method). The results are as follows:
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Figure 1: Comparing PA-MOE with recent ABR algorithms over the Train set.
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Figure 2: Comparing PA-MOE with recent ABR algorithms over the Test set.

The results—illustrated by the cumulative distribution function (CDF) plot, where curves farther toward the lower

right indicate better performance—show that PA-MoE consistently outperforms the baselines, demonstrating robust-

ness and effectiveness even against approaches that leverage prior knowledge (e.g., the meta-RL method Merina).

Pairwise comparisons of QoE components—video bitrate, stall time, and smoothness—indicate that the gains primar-

ily stem from improved smoothness and reduced stall time.
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2. Response to Reviewer 1

• Comment 1: I noticed that several key studies have not been included, although they are directly relevant to

the discussion on improving Quality of Experience (QoE) in adaptive video streaming. For example, the work

on “Smart algorithm in wireless networks for video streaming based on adaptive quantization” (Concurrency and

Computation: Practice and Experience, 2023) presents an intelligent approach that reduces resource consumption

while maintaining high streaming quality. Similarly, “An automated model for the assessment of QoE of adaptive

video streaming over wireless networks” (Multimedia Tools and Applications, 2021) provides a systematic frame-

work for evaluating QoE metrics, offering valuable insights for measuring performance in real-world conditions.

Furthermore, the study “A QoE adaptive management system for high definition video streaming over wireless net-

works” (Telecommunication Systems, 2021) introduces a management system that dynamically balances network

resources to enhance user-perceived quality. Incorporating these contributions would strengthen the manuscript

by providing a more comprehensive comparison with prior research, while also showing how other authors have

addressed the dual challenge of minimizing resource usage and improving application-level QoE.

Response:

We sincerely thank the reviewer for this valuable suggestion. We have cited the three papers mentioned in the

Introduction of the manuscript; they correspond to references [5]–[7]. We first briefly summarize these works and

then analyze how they differ from the present study. Finally, we include the corresponding revisions made to the

manuscript.

The three Papers you mentioned:

1. “Smart algorithm in wireless networks for video streaming based on adaptive quantization” (Concurrency and

Computation: Practice and Experience, 2023), which proposes an adaptive quantization strategy to dynami-

cally adjust QP parameters according to network conditions, thus maintaining perceptual quality while reducing

bandwidth usage. [Cited as [5] in the paper]

2. “An automated model for the assessment of QoE of adaptive video streaming over wireless networks” (Multi-

media Tools and Applications, 2021), which introduces an automated machine-learning-based framework for

real-time QoE evaluation using QoS and content features under wireless network fluctuations. [Cited as [6] in

the paper]

3. “A QoE adaptive management system for high definition video streaming over wireless networks” (Telecom-

munication Systems, 2021), which presents a QoE-driven management mechanism that adapts encoding and

transmission parameters to balance network utilization and perceived video quality. [Cited as [7] in the paper]

How our work differs:

This addition acknowledges recent progress in system- and encoding-level QoE optimization while clarifying how

our work differs from these studies. Specifically, we focus on a learning-level challenge: when QoE objectives shift

dynamically across heterogeneous video types and user contexts, conventional models suffer from plasticity loss and
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fail to adapt. The proposed Plasticity-Aware Mixture of Experts (PA-MoE) addresses this limitation by maintaining

adaptability under continuously evolving QoE optimization goals. We hope these revisions improve the manuscript’s

clarity and depth, and we sincerely appreciate your valuable feedback.

Revision:

We have revised the Introduction to include a concise discussion of these related works, as shown in the newly

added text (highlighted in blue):

Recent research has sought to improve QoE from the encoding, management, and assessment perspectives, such

as adaptive quantization for video encoding [8], QoE-driven management systems [9], and automated QoE evaluation

models [10]. However, these approaches primarily target system-level adaptation and do not fully capture the evolving

nature of QoE.

[8] M. Taha and A. Ali, “Smart algorithm in wireless networks for video streaming based on adaptive quantization,”

Concurrency and Computation: Practice and Experience, vol. 35, no. 9, p. e7633, 2023.

[9] M. Taha, A. Canovas, J. Lloret, and A. Ali, “A qoe adaptive management system for high definition video

streaming over wireless networks,” Telecommunication Systems, vol. 77, no. 1, pp. 63–81, 2021.

[10] M. Taha, A. Ali, J. Lloret, P. R. Gondim, and A. Canovas, “An automated model for the assessment of qoe of

adaptive video streaming over wireless networks,” Multimedia Tools and Applications, vol. 80, no. 17, pp. 26 833–26

854, 2021.

• Comment 2: The algorithm is described textually, without formal pseudo-code or stepwise presentation. This

makes it difficult for readers to reproduce the exact update procedure, including noise injection and expert selection.

Including explicit pseudo-code would improve clarity and reproducibility.

Response:

Thank you for the valuable suggestion. We have added complete pseudocode for the proposed algorithm to improve

clarity and reproducibility. Specifically, the noise-injection update is shown in Algorithm 2, line 23; expert selection

is detailed in Algorithm 2, lines 9 and 14.

The Algorithm 2 provides a step-by-step description of PA-MoE, including (i) the routing mechanism that selects

the top-1 expert based on noise-perturbed logits, (ii) the integration of plasticity-aware noise during policy and value

updates, and (iii) the overall PPO training loop for optimization. This explicit formulation enables readers to trace

how the MoE architecture interacts with PPO updates and how controlled noise injection maintains a balance between

plasticity and stability.

The newly added section and algorithm are highlighted in blue (Appendix F).

To facilitate implementation, Algorithm 2 provides complete pseudocode with explicit definitions of routing and

plasticity-aware noise update rules.
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Algorithm 2: PPO with Plasticity Aware MoE
Input: Env env; policy params πω (router + actor experts); value params Vω (router + critic experts); rollout

length T ; update epochs K.

Output: Optimized policy ω

1 for iteration = 1, 2, . . . do

2 Reset trajectory buffer; B ← ∅

3 for t = 1, . . . , T do

4 Observe state st;

5 Compute router features hπω
t ← fπω

router(st);

6 Compute clean logits uπω ←Wπω

topkh
πω
t ;

7 Add router noise scale zπω ;

8 n⋆ ← argmaxj
(
uπω
j + zπω

j

)
; # Top-1 expert index

9 eπω
t ← Expertπω

n⋆ (st) ; # selected actor expert

10 ℓt ←Wpolicye
πω
t ; # action logits

11 Sample at ∼ Categorical(logits = ℓt) and save log πω(at|st);

12 Compute value hVω
t , uVω , zVω analogously;

13 m⋆ ← argmaxj
(
uVω
j + zVω

j

)
;

14 eVω
t ← ExpertVω

m⋆(st);

15 vt ←Wvaluee
Vω
t ;

16 Step env with at to get rt, st+1, dt+1;

17 Push (st, at, rt, dt+1, log πθ(at|st), Vt) into B;

18 if dt+1 then

19 reset env and continue

20 Compute advantages At and returns Rt from B;

21 for epoch = 1, . . . ,K do

22 for each minibatch B ⊂ B do

23 Update w using noise injection by Eq. (11) in the revised manuscript;

24 (optional) Save checkpoints periodically;
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• Comment 3: The convergence analysis relies on L-smoothness and µ-strong convexity assumptions. Neural

network losses under nonstationary QoE shifts are highly nonconvex, creating a potential gap between theory and

real-world performance. The authors should discuss the limitations of these assumptions.

Response: We thank the reviewer for this insightful and constructive comment.

1. Nonconvex: We fully agree that the assumptions of µ-strong convexity and L-smoothness are idealized and

may not strictly hold for deep neural networks under nonstationary QoE objectives. However, in PPO-based methods,

each policy update is constrained to a trust region, within which the loss can be well approximated by a local quadratic

form. This local approximation motivates adopting assumptions such as L-smoothness and µ-strong to capture the

objective’s local behavior. Similar approximations have been employed in prior theoretical analyses, e.g., [11].

The intuition is that, although the overall optimization landscape is nonconvex, each update step is restricted to

a trust region. Within this region, the objective behaves approximately convex, effectively reducing a nonconvex

problem to a sequence of locally convex subproblems.

We have also explained this point in the paper (Section IV-B):

In PPO, the policy update is constrained within a trust region, which ensures that each update only makes small

changes to the current parameters. Although the global objective may be highly nonconvex, within the trust region, the

loss function can be well approximated locally by a quadratic function. This approximation allows us to make certain

assumptions about the behavior of the loss function, such as being L-smooth and µ-strongly convex, which is also

considered in [11]. These assumptions are useful for theoretical analysis and for understanding how the parameters

adapt to a changing environment.

2. Limitation of the Assumption:

Our analysis assumes local L-smoothness and µ-strong convexity within each PPO update. This approximation

may hold only in a small neighborhood; noisy gradients or large effective step sizes can move the iterate outside this

region, invalidating the quadratic approximation.

In the revised manuscript, we have added a paragraph at the end of the Section IV-B Training Experts with

Plasticity Injection subsection to explicitly discuss this limitation. The following clarification has been incorporated

into the text:

While the convergence proof assumes L-smoothness and µ-strong convexity for analytical convenience, these are

intended as local regularity conditions within each PPO step rather than claims of global convexity; when steps are

large or gradients are indistinguishable from noise, the local quadratic approximation can break down. Nevertheless,

PA-MoE exhibits stable convergence under nonconvex neural losses in practice, suggesting that its plasticity-aware

updates remain effective beyond these idealized assumptions.

[11] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “On the theory of policy gradient methods: Optimality,

approximation, and distribution shift,” Journal of Machine Learning Research, vol. 22, no. 98, pp. 1–76, 2021.

• Comment 4: The balance between active forgetting and memorization depends heavily on the learning rate η and

noise strength γ. The manuscript lacks guidelines or sensitivity analysis for selecting these hyperparameters, which

is critical for practical adoption.
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Response: We sincerely appreciate the reviewer’s insightful comments. In the revised version, we have completed

and strengthened the experiments for both parts.

1. Sensitivity analysis for noise strength γ:

We already conducted the sensitivity analysis of the noise strength γ in the subsection Section V-G: Parameter

Sensitivity Analysis in PA-MoE.
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Figure 3: Comparison of QoE Methods using the IQM (Interquartile Mean) with a focus on the 25th-75th percentile returns. This approach aims to

highlight the relative performance of different methods while minimizing the impact of outliers.

In PA-MoE, the magnitude of noise injection is a critical parameter. Our sensitivity analysis, presented in Fig. 3,

reveals that both excessively low and high noise levels lead to performance degradation. This observation aligns with

our theoretical analysis and validates Theorem 1. Furthermore, as shown in Appendix L, visualizations of the weight

magnitudes indicate that the neural network adaptively adjusts its weights to retain memory and counteract noise-

induced forgetting. These findings underscore the importance of carefully tuning the noise level to balance plasticity

and stability in dynamic environments.

2. Sensitivity analysis for learning rate η:

We added a learning-rate sensitivity analysis to assess its effect on performance. The corresponding figures and

explanations are included in the manuscript. Both excessively large and excessively small learning rates degrade

performance, in agreement with our theoretical results. The added content is as follows:
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Figure 4: Comparison of QoE Methods using the IQM (Interquartile Mean) with a focus on the 25th-75th percentile returns.

Figure 4 shows QoE as a function of the learning rate. We find that both excessively large and excessively small
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learning rates degrade performance, in agreement with our theoretical results. An inappropriate learning rate may even

violate the trust-region assumption. Nevertheless, the experiments indicate that, even with a learning rate as large as

0.005—rare in practice—our method still achieves a modest improvement.

3. Guidelines for practical

In practical algorithm testing, we place greater emphasis on tuning the noise parameters. Our rationale is as

follows:

In our theory, the update rule injects noise whose amplitude is scaled by the learning rate, i.e.,

wt+1 = wt − η∇Lt(wt) + ηγϵt.

So the effective plasticity control depends on the product k = ηγ (see Eq. (11) in the paper). Moreover, the

tracking-error bound

1

T

T∑
t=1

E ∥et∥2 ≤ C

(
ηγ2d+

P 2
T

Tη

)
, (1)

makes this coupling explicit: η multiplies the noise term, whereas 1
η governs the memorization term (Theorem 1).

Firstly, Method-specific vs. optimizer-specific. η is an optimizer-level hyperparameter shared by all methods

(PPO with clipping/trust-region), rather than specific to PA-MoE. To ensure fair comparisons and to remain within

the stability regime η ≤ 1
L , we use a fixed η across all models, following standard PPO practice. Sweeping η would

simultaneously alter trust-region behavior and confound method comparisons.

Secondly, Theory prescribes tuning k = ηγ, practice varies γ with fixed η. Because the effective injected

noise is ηγ, varying γ at fixed η directly explores the plasticity–stability trade-off predicted by the bound. Our noise-

sensitivity analysis sweeps γ and shows the expected “too small/too large both hurt” behavior (Fig. 12 in the revised

manuscript), identifying a robust band (e.g. γ ∈ [0.0005, 0.005]) where QoE is stable—precisely the regime in which

k is well tuned.

Thirdly, Actionable guideline. In deployment, practitioners typically (i) set η based on optimizer stability and

throughput constraints (as we do across all baselines), and then (ii) tune γ to target a good k. This procedure aligns

with the theory (dependence on the product ηγ) and with our ablations (the γ-sweep).

• Comment 5: The Top-1 expert selection may bias learning toward certain experts, and the paper does not analyze

whether all experts are effectively utilized. Additionally, the computational cost of multiple experts with noise

injection is not discussed, raising concerns about scalability.

Response: We thank the reviewer for raising this important point regarding expert utilization and scalability. We

address these points in turn.

1. Whether all experts are effectively utilized?

As shown in the subsection “Section V-C: Are the selection probabilities for each expert balanced?” (Fig. 5),

all experts in PA-MoE are utilized uniformly, exhibiting a well-balanced routing distribution throughout training. In
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this reply, we have included the result figure, as shown in Figure 5. The results in Figure 5 confirm that PA-MoE

selects evenly across the three experts, achieving load balance.
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Figure 5: Probability distribution of each expert selected for Policy and Value.

2. Computational cost of multiple experts

Although PA-MoE contains multiple experts, only one expert (Top-1) is activated per input during both training

and inference. Consequently, the per-sample computational cost scales with the number of activated experts (= 1)

rather than the total number of experts. The additional overhead from noise injection is negligible, since it amounts to

applying small Gaussian perturbations to expert parameters. Another source of computational overhead comes from

the router, but it does not increase with the number of experts.

To make this explicit, we added the following clarification in the subsection Section IV: Architectural Paradigm

of the MoE Framework:

Although the architecture includes N experts, only one expert is selected for each input, keeping the per-sample

complexity at O(1).
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3. Response to Reviewer 2

3.1. Comments

This manuscript focuses on adaptive video streaming, with a specific emphasis on modeling and analyzing

plasticity in multimedia delivery systems. The study directly addresses core multimedia topics such as content

adaptation, video quality optimization, and real-time transmission under dynamic Quality of Experience (QoE).

Response: We sincerely thank the reviewer for the positive and thoughtful summary, as well as for recognizing the

central focus of our work.

Indeed, this study explores adaptive video streaming from a learning-level perspective, with particular empha-

sis on modeling and maintaining plasticity in multimedia delivery systems under dynamically changing Quality of

Experience (QoE) objectives.

We have addressed all the points you raised, including (i) the motivation for adopting MoE, (ii) the key de-

sign choices in PA-MoE, (iii) additional experiments that benchmark both learning-based and non-learning-based

approaches, (iv) the proposed framework for describing the simulation setup, and (v) the connection between the

theoretical analysis and the overall method.

• Comment 1: The manuscript aims to address the issue where differences in user profiles and video content

lead to varying weights for QoE factors, resulting in user-specific QoE functions and thus different optimization

objectives. While heterogeneous QoE has been explored in the Adaptive Bitrate (ABR) field—for instance, [R1]

and [R2] utilize meta-learning and self-attention-based representation learning for personalized bitrate adaptation,

and [R3] introduces spatial–temporal learning to enhance the generalization of Deep Reinforcement Learning

(DRL)-based ABR—the application of Mixture of Experts (MoE) in adaptive video streaming remains relatively

unexplored. Therefore, the motivation for employing MoE over existing techniques needs to be more clearly and

compellingly articulated.

Response: Thank you for the valuable comment. In response, we will address your points from two perspectives: (i)

we will compare and clarify the differences between our work and the related studies you mentioned, and (ii) we will

explain the motivation for adopting the Mixture-of-Experts (MoE) framework.

1. The difference between our work and the related studies you mentioned

We have cited the literature you mentioned and, in the revised paper, added the relevant comparisons and discus-

sion. Our more detailed comparison and explanation are as follows:

R1: “Mansy: Generalizing neural adaptive immersive video streaming with ensemble and representation learning”

trained a QoE identifier, meaning that it requires prior knowledge of how user QoE preferences change over

time. In other words, the model introduces explicit prior information about preference dynamics to enhance

generalization capability. [Cited as [40] in the paper]

R2: “A novel spatial-temporal learning method for enhancing generalization in adaptive video streaming” focuses

on variations in network conditions. It trains a network-bandwidth classifier as prior knowledge to enhance

the model’s generalization capability. [Cited as [41] in the paper]
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R3: “Merina+: Improving generalization for neural video adaptation via information theoretic meta-reinforcement

learning,” adopts a meta-reinforcement learning approach. It compresses prior knowledge of network band-

width through an autoencoder, and then incorporates this latent representation as an input to the policy net-

work to improve generalization. [Cited as [42] in the paper]

All three of the above studies follow a two-stage approach: in the first stage, prior knowledge is represented or

encoded, and in the second stage, policy optimization is performed based on the learned representation. For this class

of methods, we have provided a detailed comparison and discussion in the Section I: Introduction, as shown below.

However, two-stage optimization methods encounter several challenges that hinder effective QoE optimization.

Inaccuracies in user-level predictions can cascade into subsequent stages, resulting in suboptimal outcomes. Fur-

thermore, their sequential nature, dependence on pre-trained models, and reliance on historical data delay real-time

adjustments and updates, while also limiting the ability to generalize when faced with QoE variations beyond the train-

ing distribution. Existing approaches for handling dynamic QoE weights, such as multi-objective Q-networks [12] and

meta-reinforcement learning [2], typically rely on a key assumption: the dynamics of the weight changes are known in

advance and can be used either as input to the model [12] or for pretraining [2]. In contrast, our method removes this

critical assumption by directly addressing the problem from the perspective of plasticity, making our approach more

aligned with realistic industrial scenarios.

Based on the references you mentioned, we have added corresponding comparisons and discussions to the Section

III: Related Work, as shown below.

For example, some methods first employ a monitor to detect system changes before applying adjustments such as

retraining [13]; others train a QoE identifier [14] and a network-bandwidth classifier [15]; and in meta-reinforcement

learning, an autoencoder is used to compress prior knowledge about network bandwidth [16]. Meta reinforcement

learning enables systems to "learn how to learn" across multiple tasks [17, 18], facilitating rapid adaptation. How-

ever, this approach often assumes that tasks share certain stationary properties in their distributions, which is often

unrealistic in real-world adaptive video streaming applications.

2. The motivation behind our adoption of the Mixture-of-Experts (MoE) framework.

Reason for adopting the MoE framework: Most existing methods for handling dynamic objectives adopt a

two-stage optimization scheme: in the first stage, prior knowledge about QoE dynamics is encoded and supplied

to the policy network; in the second stage, the policy is optimized. However, in industrial deployments, acquiring

and validating such priors is highly resource-intensive, often requiring substantial human effort and data collection.

Once prior knowledge is introduced, it implicitly assumes a particular distribution. When the underlying dynamics

shift beyond this distribution (i.e., out of distribution), the model fails to generalize, rendering the system difficult to

deploy. We therefore propose a single-stage optimization method that introduces no prior knowledge, relying instead

on the inherent properties of neural networks. Given that Mixture-of-Experts (MoE) leverages multiple experts to

address different subproblems, it is a natural choice for modeling dynamic objectives.

We added the following description to the Mixture of Experts section in the original manuscript (Section III-C:

Mixture of Experts):
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The MoE architectures utilizes a router mechanism to dynamically assign input states to specialized expert net-

works for decision-making [19]. This approach has been widely adopted in large-scale models [20, 21, 22] and has

shown exceptional performance in multi-task learning and Continual Learning (CL) scenarios [23]. Therefore, it is

natural and intuitive to consider applying it to handle the objective shifts in AVS.

During deployment, we observed that applying Mixture-of-Experts (MoE) to adaptive video streaming can suffer

from a loss of plasticity. We therefore conducted an in-depth analysis of this phenomenon, offering a new perspective

on optimizing adaptive video streaming.
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• Comment 2: What is the key design in PA-MoE? What are the unique challenges of applying MoE to ABR?

For example, the authors summarize in their second contribution that they incorporate controlled noise injection

into experts to actively eliminate outdated knowledge, thereby maintaining the adaptive capability of the MoE

framework. However, this design appears to be a general approach for MoE rather than one specifically tailored to

ABR. Is this a novel contribution of this paper? How is this design connected to the specific problems in ABR?

Response: We sincerely thank the reviewer for the insightful question regarding the key design of PA-MoE and the

unique challenges of applying the Mixture-of-Experts (MoE) framework to adaptive bitrate (ABR) streaming. We

address the questions point by point below.

1. What is the key design in PA-MoE?

The core design of PA-MoE is a plasticity-preserving MoE tailored for ABR’s nonstationary objectives. Con-

cretely, we introduce controlled stochastic perturbations of expert weights (rather than gating noise) to periodically

refresh stale parameters and sustain neuron/expert utilization under distribution shift. This mechanism is intentionally

simple and lightweight, but is guided by our analysis of plasticity loss in MoE: it maintains gradient diversity, prevents

premature parameter dormancy, and preserves the ability to adapt as network and user conditions evolve. In addition,

we reformulate a previously two-stage pipeline [14, 15, 16] into a single-stage procedure that removes the need for

priors, improving deployability.

2. What are the unique challenges of applying MoE to ABR? Is this a novel contribution of this paper?

ABR-specific challenge. Unlike stationary tasks, ABR faces continual, goal-driven nonstationarity: the QoE

objective shifts with throughput, latency, buffer dynamics, and user behavior. In this setting, standard MoE variants

tend to suffer loss of plasticity: experts become under-utilized or “dormant,” routing adapts more slowly, and the model

overfits to recent regimes—limiting real-world QoE.

Our contributions. (i) We identify and analyze loss of plasticity in MoE under ABR dynamics and show its

impact on QoE variability. (ii) We propose a weight-space noise mechanism that targets the plasticity failure mode

at the neuron/expert level. This differs from common MoE variants that inject noise in the gating network (which

mainly perturbs routing rather than rejuvenating expert parameters). (iii) We provide a single-stage, no-prior training

formulation that simplifies deployment compared with two-stage designs.

While noise as a general idea is known, our novelty lies in (a) diagnosing the ABR-specific plasticity problem in

MoE, (b) targeted application at expert weights to actively forget outdated knowledge, and (c) demonstrating that this

plasticity lens enables a simpler, prior-free, single-stage solution that improves ABR QoE. We believe these insights

are relevant beyond ABR, but our evidence and design choices are grounded in ABR.

3. How is the design connected to the specific problems in ABR?

All of our experiments, analyses, and conclusions are grounded in ABR; this, in our view, is the strongest connec-

tion. In ABR, QoE objectives are nonstationary, varying with both network conditions and user behavior. Existing
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methods typically inject prior knowledge (e.g., learned QoE models or bandwidth predictors) to guide adaptation,

which can lead to overfitting and limited generalization in real-world deployments. PA-MoE addresses this issue from

a learning perspective, enabling the system to retain adaptability through intrinsic plasticity rather than external pri-

ors. Thus, although noise injection is conceptually simple, its role here is novel: it directly tackles the plasticity

degradation problem specific to ABR’s dynamically evolving objectives.

• Comment 3: In the simulations, only MoE and SMoE are compared. While this demonstrates that the proposed

MoE designs improve performance relative to other MoE-based methods in ABR, it does not sufficiently validate

or motivate the use of MoE in ABR solutions. Comparisons with other learning-based and non-learning-based

benchmarks are necessary to highlight the superiority of MoE for ABR.

Response: We sincerely thank the reviewer for this valuable and insightful comment. In the revised manuscript,

we have expanded the experimental section to include comprehensive comparisons with both learning-based

and non-learning-based benchmarks, thereby more rigorously validating the effectiveness of—and the motivation

for—adopting the Mixture-of-Experts (MoE) framework in adaptive bitrate (ABR) streaming.

The newly added content is summarized as follows:

Section V-E: In this subsection, we compare our approach with methods that rely on prior knowledge, including

learning-based approaches such as Pensieve [4] and the meta-learning method Merina [2], as well as non-learning-

based approaches such as RobustMPC [7], RateBased [6], and BufferBased [5]. To ensure a fair and credible compar-

ison, we use the same QoE-component coefficients and network architecture in Merina [16] for each of the experts in

the MoE.
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Figure 6: Comparing PA-MOE with recent ABR algorithms over the Train set.
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Figure 7: Comparing PA-MOE with recent ABR algorithms over the Test set.

Figure 6 presents the cumulative distribution functions (CDFs) of average QoE for all sessions and algorithms

on the training set, along with pairwise comparisons of the QoE components—bitrate, smoothness, and stall time.
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Figure 7 shows the corresponding results on the testing set. As shown, our proposed PA-MoE achieves state-of-the-

art performance, even relative to the meta-learning method Merina, which leverages prior knowledge. These results

underscore the substantial potential of optimizing adaptive bitrate (ABR) algorithms through the lens of plasticity.

• Comment 4: Furthermore, the simulation setup should be included in the main body of the paper rather than in

the appendix to ensure reproducibility. It is also unclear which downlink network is considered in the simulations.

Does the study employ Python simulations with real-world network traces (such as those used in Pensieve and

Comyco), emulation, or a real-world testbed?

Response: Thank you for your valuable comment. We address these points in turn.

1. The simulation setup should be included in the main body of the paper rather than in the appendix to

ensure reproducibility.

Following your suggestion, we have moved the simulation setup to the “Experiment Setting” section in the main

body of the paper.

Section V-A: Experiment Setting

The experiments were performed on a system equipped with an Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz,

without GPU acceleration. The set of available bitrates is defined as A = {300, 750, 1200, 1850, 2850, 4300} kbps.

Each video segment has a duration of 4 seconds. The playback buffer can hold up to 60 seconds of content, and the

video consists of 49 segments in total. PPO hyperparameters are detailed in Table 2. For each training run, the agent

is trained for approximately two hours, with a total of 2 million timesteps and 1000 iterations. All hyperparameters,

including random seeds, are kept consistent across different algorithms. All QoE shift patterns in this paper follow the

format illustrated in Figure 1 in the revised manuscript.
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Table 2: Potential Hyperparameters Configurations For PPO.

Hyperparameter Value

Learning Rate 1e-4

Batch size 2000

Minibatch Size 62

Number of Iteration 1000

Steps 2000

Total Timesteps 2e6

Update Epochs 5

GAE-γ 0.99

GAE-λ 0.95

Clip ϵ 0.2

Entropy Coefficient 0

Value Function Coefficient 5

Activation ReLU

Environment {D, L, N}

# Experts 3

Expert Hidden Size 18

MoE {MoE, SMoE, PA-MoE}

Router {Top-K-Router, Softmax-Router}

Number of Selected Experts 1

Actor MoE True

Critic MoE True

2. It is also unclear which downlink network is considered in the simulations.

Following your suggestion, we have provided a more detailed explanation of the datasets we use in the “Experiment

Setting” section; the added content is as follows:

Network Trace Datasets: In our experiments, we draw on three distinct sources of throughput traces: (i) record-

ings from HSDPA-based 3G networks [1], captured while smartphones streamed video during travel by subway, tram,

train, bus, and ferry; (ii) the FCC corpus [2], created by stitching together randomly sampled logs from the “Web

browsing” class in the August-2016 public release; and (iii) the Puffer open dataset [3], which comprises on-demand

video sessions observed over heterogeneous access technologies, including wired links, Wi-Fi, and cellular systems

(3G/4G/5G). A total of 127 trace files are included in the training dataset and 142 trace files in the testing dataset.

There is no overlap between the training and testing datasets, and all datasets will be released together with the source

code upon publication.
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3. Does the study employ Python simulations with real-world network traces (such as those used in Pensieve

and Comyco), emulation, or a real-world testbed?

Our experiments are conducted using Python-based simulations with real-world network traces, consistent with

the setups employed in prior work such as Pensieve.

• Comment 5: How does the performance regret bound help the design of PA-MoE is not clear. In the current

manuscript, the design part and the anlysis part looks de-coupled.

Response: Thank you for this valuable and insightful comment. We address these points in turn.

1. How does the performance regret bound help the design of PA-MoE is not clear.

The performance regret bound is intended to provide theoretical justification for addressing QoE shift in PA-MoE

by adding noise. Our analysis establishes the existence of a solution, and our experiments corroborate that improved

solutions can indeed be found. How to further refine PA-MoE based on this theory is left for future work. For example,

a promising direction is to inject noise selectively into dormant neurons rather than all neurons. Doing so would alter

the update rule and, leveraging the current analysis, could yield a tighter bound—a step from theory to method. This

would represent a progression from theory to method. That said, this paper focuses primarily on analysis: from a

plasticity perspective, we show that there is substantial room to optimize for QoE shift, and we provide preliminary

empirical and theoretical evidence for this claim.

Put differently, we present PA-MoE as a plasticity-oriented approach to addressing QoE shift, and we derive a

performance (regret) bound that provides a formal guarantee. We did not adapt existing theories to guide the design

of PA-MoE, nor did we aim to obtain a tighter bound.

2. In the current manuscript, the design part and the anlysis part looks de-coupled.

Our theoretical analysis is intended to show that the policy component we design admits a performance bound.

We provide an illustrative example to clarify the paper’s aims and to explain how the theoretical analysis fits into

the overall work.

Optimal 
QoE1

Optimal 
QoE1

Optimal 
QoE2

Solution

Performance 
bound

: Trust Region

: Solution Space

: Solution Space with plasticity

(a) (b)

Figure 8: Schematic illustration of the theoretical analysis.

As illustrated in Figure 8 (a), a standard PPO update is performed within a trust region at each iteration. However,

modern neural networks can suffer from loss of plasticity, whereby some neurons become inactive during training.
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This lowers neuron utilization, effectively reducing the number of usable neurons and thereby shrinking the search

space, as indicated by the purple circle in Figure 8 (a).

As shown in Figure 8(b), the blue circle denotes the solution space after noise injection. Because the perturbation

mitigates loss of plasticity, the solution space expands. Consequently, when the QoE objective shifts, there is a larger

region in which to search for parameter configurations capable of changing the current policy. In essence, PA-MoE

addresses loss of plasticity in MoE rather than merely adding noise. Although many methods could alleviate this loss,

we adopt the simplest possible approach to highlight the substantial headroom for optimization—under QoE shift in

ABR—from the perspective of neural plasticity.

Our theoretical bound is derived under the assumption that each update is performed within a trust region. Because

every iteration remains within this region [11], the bound we obtain for the PA-MoE solution also serves as a bound

on the policy itself. The green “Performance bound” label in Figure 8(b) explicitly illustrates the relationship between

the solution produced by our method and the optimal solution.
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4. Response to Reviewer 3

4.1. Comments

Making bitrate decisions in adaptive bitrate streaming is critical for optimizing user QoE. This manuscript

adopts a Mixture of Experts (MoE) framework to address the plasticity loss problem in current learning methods.

The proposed PA-MoE balances memory retention with selective forgetting by leveraging the MoE architecture

and noise injection. The theoretical analyses are solid and comprehensive, and the experiments demonstrate the

effectiveness of the designed scheme.

Response: We sincerely thank the reviewer for the positive and encouraging evaluation of our work. We are pleased

that the reviewer recognizes the significance of addressing plasticity loss in learning-based adaptive bitrate streaming

and acknowledges both the soundness of our theoretical analysis and the effectiveness of our experimental results. We

greatly appreciate this affirmation, which encourages us to further refine and extend the proposed PA-MoE framework

in future research.

• Comment 1: Figure 1 aims to validate the effectiveness of MoE in adapting to QoE shifts. However, using bitrate

as a metric is confusing. What is the rationale for selecting bitrate over QoE for plasticity evaluation? Additionally,

please provide a detailed illustration of the QoE shift phenomenon depicted in the figure.

Response: We sincerely thank the reviewer for this insightful and thought-provoking comment. The reviewer’s obser-

vation regarding the choice of bitrate as the evaluation metric versus QoE directly points to the conceptual essence of

our framework, and we truly appreciate this deep reflection.

1. Rationale for Selecting Bitrate over QoE for Plasticity Evaluation.

Rationale for Not Using QoE as the Evaluation Metric: The changes we introduce lie in the objective function

itself, namely, QoE. If QoE were used directly as the plasticity metric, it would be difficult to determine whether

variations in QoE arise from changes in the objective’s parameters or from the adaptation capability of the learning-

based method.

Rationale for Using Bitrate as the Evaluation Metric: QoE is not suitable for measuring plasticity. We therefore

identify an internal system metric to assess the neural network’s learning ability. The policy’s response—i.e., its

actions—provides an intuitive proxy for how the policy network evolves during the QoE shift. Accordingly, we use

bitrate to quantify loss of plasticity.

2. Please provide a detailed illustration of the QoE shift phenomenon depicted in the figure.

In the revised manuscript, we have added illustrations to describe the QoE-shift phenomenon and to explain why

we do not use QoE as a metric for plasticity (Appendix D):

In this subsection, we explain why we use the mean of the action outputs as the metric for evaluating the MLP’s

inability to handle QoE shifts. When the objective coefficients change abruptly, overall QoE may fluctuate even if the

MLP’s output actions remain unchanged, as shown in Fig. 9. Such QoE fluctuations are uninformative. For example,

if the coefficient of the bitrate term in the QoE function changes from 1 to 6, the QoE contribution of bitrate rises

sixfold, even though the policy is effectively unresponsive. Therefore, during objective-function shifts, performance
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Figure 9: QoE output variation across different network architectures under shifted QoE reward conditions. D, L, and N represent distinct QoE

metrics.

cannot be judged solely by QoE values, as they may convey a false sense of progress. This phenomenon may partly

explain why many learning-based methods struggle to generalize under dynamically changing QoE objectives.

Therefore, when the objective function changes, comparing the QoE values for an MLP with unchanged outputs

is uninformative, as the policy is no longer genuinely responsive.

We would like to once again thank the reviewer for raising this profound and insightful question.

• Comment 2: Please provide a clear explanation of the actual inputs and outputs of PA-MoE.

Response: We sincerely thank the reviewer for this helpful question. We agree that clarifying the actual inputs and

outputs of PA-MoE is essential for better understanding the model design. We added the following clarification at the

end of the Problem Formulation subsection (Section II-A Problem Formulation):

The state and action spaces are aligned with mainstream approaches such as Pensieve [4]. The environment follows

a standard reinforcement learning formulation: the agent interacts with the streaming system by observing network and

playback states and selecting bitrate actions accordingly. The input is the state st ∈ R6×8, comprising six categories

of information, each tracked over the most recent eight time steps: (i) normalized last selected bitrate; (ii) normalized

buffer occupancy; (iii) measured throughput (downloaded size per unit time); (iv) normalized delay; (v) sizes of the

next video chunk for all bitrate levels; and (vi) remaining number of chunks until the end of the video. PA-MoE

outputs a discrete bitrate action at ∈ {0, 1, 2, 3, 4, 5}, where each value corresponds to one of the six available bitrate

levels in the streaming system.

The input features and the output action space are kept consistent with those of Pensieve [4] and the Merina method

[2].

• Comment 3: As PA-MoE is a learning-based ABR scheme, it should be compared against state-of-the-art rein-

forcement learning-based ABR methods. Have you considered comparing with representative baselines such as

MPC, Pensieve, BOLA, Oboe, Pytheas, or Soda?

Response: Thank you for your valuable comment. In the revised version of our manuscript, we have added compar-

isons with existing learning-based and non-learning-based methods. Our method outperforms the non-learning-based
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method Robust MPC [7], the classic learning-based Pensieve [4], and the meta-reinforcement learning method Merina

[2]. The added content is as follows (Section V-E):

In this subsection, we compare our approach with methods that rely on prior knowledge, including learning-based

approaches such as Pensieve [4] and the meta-learning method Merina [2], as well as non-learning-based approaches

such as RobustMPC, RateBased, and BufferBased [7]. To ensure a fair and credible comparison, we use the same

QoE-component coefficients and network architecture in Merina [16] for each of the experts in the MoE.
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Figure 10: Comparing PA-MOE with recent ABR algorithms over the Train set.
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Figure 11: Comparing PA-MOE with recent ABR algorithms over the Test set.

Figure 6 presents the cumulative distribution functions (CDFs) of average QoE for all sessions and algorithms

on the training set, along with pairwise comparisons of the QoE components—bitrate, smoothness, and stall time.

Figure 7 shows the corresponding results on the testing set. As shown, our proposed PA-MoE achieves state-of-the-

art performance, even relative to the meta-learning method Merina, which leverages prior knowledge. These results

underscore the substantial potential of optimizing adaptive bitrate (ABR) algorithms through the lens of plasticity.

• Comment 4: Figure 8 is difficult to interpret due to the lack of describing system changes. Similar to Figure 1,

the relationship between the system environment and bitrate requires further explanation.

Response: Thank you for the valuable comment.

We have added a description of the system-change mode and specified the expected bitrate response under en-

vironmental changes. “D” denotes documentaries, “L” live streams, and “N” news. The parameter coefficients for

each video type are the same as those in Figure 1. We have revised the Section V-F: Influence on System Internal

States subsection and added the following explanations (highlighted in blue in the manuscript) to further clarify our

experimental results.

In this section, we present visualizations of the system’s internal state metrics to analyze the behavior of different

algorithms. This will help us gain a better understanding of their impact on overall QoE. The system environment
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Figure 12: Illustration of Internal State Metrics Variations in a Video Streaming System under Shift QoE Conditions.

changes in Figure 12 are consistent with those in Figure 1. ‘D’ denotes documentaries, ‘L’ live streams, and ‘N’

news. The parameter coefficients for each video type are also the same as in Figure 1. Because the objective function

changes abruptly, we expect the algorithm to adjust its behavior when the QoE coefficients vary. For example, when

the objective function shifts from L to N , meaning that the bitrate coefficient in the QoE changes from 1 to β while

the rebuffering coefficient changes from β to 1, the agent should correspondingly modify its action—specifically, by

increasing the selected bitrate—to obtain a higher QoE reward.
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Figure 13: Variations in the Internal State Metrics of the Video Streaming System.

As shown in Figure 12, we can see that PA-MoE exhibits periodic variations in the action space, which correspond
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to system changes. On the other hand, SMoE only shows minor fluctuations and fails to adapt quickly. In contrast,

MoE does not demonstrate any periodic adaptation. Since the QoE coefficients change directly, using the QoE value

itself to study plasticity is not appropriate. If the policy does not adapt its behavior in response to environmental

changes, the direct modification of QoE coefficients will still cause the QoE value to fluctuate accordingly. Therefore,

examining whether the actions exhibit periodic adjustments provides a more reliable reflection of the system’s adaptive

state.

Furthermore, for an AVS system, when the coefficient corresponding to the bitrate term in the QoE increases,

the algorithm should select a higher bitrate to achieve a better QoE score. However, a higher bitrate requires more

time to download, leading to increased delay and rebuffering time, while the buffer size decreases and the throughput

increases. This represents a preliminary analysis of the internal state dynamics of the system.

Figure 13 illustrates detailed variations across the entire internal state of the system, revealing that PA-MoE more

effectively utilizes the buffer size, resulting in higher throughput. From the perspective of internal system state vari-

ables, the performance improvement of PA-MOE mainly comes from reduced sleep time and more efficient buffer

utilization. By adapting to changes in the action space, it can actively select actions that yield higher rewards. In

contrast, MoE suffers from a loss of plasticity and fails to keep up with the rapidly changing system. This further

validates the effectiveness of our proposed plasticity injection method.

• Comment 5: What is the decision delay of PA-MoE without GPU acceleration in deployment? Is this overhead

reasonable for client-side implementation? A solid comparison of computational overhead with existing methods

would further strengthen the superiority of PA-MoE.

Response: We sincerely thank the reviewer for this thoughtful question regarding the decision delay and deployment

feasibility of PA-MoE.

What is the decision delay of PA-MoE without GPU acceleration in deployment? Is this overhead reasonable

for client-side implementation?

We evaluated PA-MoE’s algorithmic latency without GPU acceleration. Over 14,400 decision inferences, the

average decision delay was 0.8056 ms. Given that each video segment is 4 seconds long, a 0.8056 ms decision delay

is well within an acceptable range.

The total number of parameters in Pensieve is 205,703, with a memory footprint of 0.78 MB. Merina has 208,775

parameters (0.80 MB), and PA-MoE has 821,651 parameters (3.13 MB). For modern computing platforms, these

footprints are well within practical limits; moreover, model quantization and pruning can further reduce the memory

requirements.

A solid comparison of computational overhead with existing methods would further strengthen the superi-

ority of PA-MoE.

We evaluated 14,400 inference runs and measured the decision latency for the Buffer-based, Rate-based, Ro-

bustMPC, Pensieve, Merina, and PA-MoE, reporting the mean value, 50th, and 95th percentiles. The results are

shown in Table 3.
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Table 3: Inference time per decision (CPU-only, batch size = 1). Lower is better.

Method Mean (ms) p50 (ms) p95 (ms)

Buffer-based 0.0026 0.0031 0.0032

Rate-based 0.0089 0.0087 0.0098

RobustMPC 0.1075 0.0696 0.3245

Pensieve 0.2984 0.2925 0.3266

Merina 0.4118 0.3947 0.4765

PA-MoE 0.8056 0.7994 0.8302

PA-MoE exhibits a decision latency nearly twice as high as that of existing learning-based methods. Notably,

this latency does not scale with the number of experts; the incremental overhead is dominated by the router’s feature

processing and intra-MoE computation, rather than by the expert count itself.

As clarified in the revised manuscript (see Section IV: Architectural Paradigm of the MoE Framework subsec-

tion): “Although the architecture includes N experts, only one expert is selected for each input, keeping the per-sample

complexity at O(1).”

This means that, during both training and inference, only a single expert (Top-1) is activated, while the others

remain inactive, ensuring that the computational cost grows linearly with the number of active experts (=1) rather than

with the total number of experts.
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